Evolutions of 30-Year Spatio-Temporal Distribution and Influencing Factors of Suaeda salsa in Bohai Bay, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Preprocessing
2.3. Analysis of Pattern Fragmentation
2.4. Analysis of Influencing Factors
2.5. Selection on Influencing Factors
3. Results
3.1. Area Changes of S. salsa from 1990 to 2020
3.2. Landscape Pattern Changes of S. salsa
3.3. Spatial Distributions of S. salsa in the National Nature Reserves
3.4. Influencing Factors of S. salsa Changes
4. Discussion
4.1. Annual Monitoring Using Landsat Data and the GEE Platform
4.2. Limitations and Future Studies
4.3. Potential Applications for S. salsa Conservation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Camacho-Valdez, V.; Ruiz-Luna, A.; Ghermandi, A.; Nunes, P.A.L.D. Valuation of ecosystem services provided by coastal wetlands in northwest Mexico. Ocean. Coast. Manag. 2013, 78, 1–11. [Google Scholar] [CrossRef]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of Human-Driven Change in Salt Marsh Ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2020, 238, 110987. [Google Scholar] [CrossRef] [PubMed]
- Peter, C.; Lerato, S.K. Montane Palustrine Wetlands of Lesotho: Vegetation, Ecosystem Services, Current Status, Threats and Conservation. Wetlands 2021, 41, 67. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wang, W.; Fang, W.; Chiang, Y.; Liu, X.; Ju, H. Vegetation successions of coastal wetlands in southern Laizhou Bay, Bohai Sea, northern China, influenced by the changes in relative surface elevation and soil salinity. J. Environ. Manag. 2021, 293, 112964. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fernanda, A.M.; Chengrong, C. Resource stoichiometry, vegetation type and enzymatic activity control wetlands soil organic carbon in the Herbert River catchment, North-east Queensland. J. Environ. Manag. 2021, 296, 113183. [Google Scholar] [CrossRef]
- Püttker, T.; Meyer-Lucht, Y.; Sommer, S. Effects of fragmentation on parasite burden (nematodes) of generalist and specialist small mammal species in secondary forest fragments of the coastal Atlantic Forest, Brazil. Ecol. Res. 2008, 23, 207–215. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Zhang, Y.; Tong, S.; Liu, X. Early establishment of Suaeda salsa population as affected by soil moisture and salinity: Implications for pioneer species introduction in saline-sodic wetlands in Songnen Plain, China. Ecol. Indic. 2019, 107, 105654. [Google Scholar] [CrossRef]
- Tian, Y.; Luo, L.; Mao, D.; Wang, Z.; Li, L.; Liang, J. Using Landsat images to quantify different human threats to the Shuangtai Estuary Ramsar site, China. Ocean. Coast. Manag. 2017, 135, 56–64. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.; Wang, X.; Fu, Y.; Kan, X.; Lin, Q.; Han, G.; Lu, Z. Physiological Responses of Halophyte Suaeda salsa to Water Table and Salt Stresses in Coastal Wetland of Yellow River Delta. CLEAN-Soil Air Water 2011, 39, 1029–1035. [Google Scholar] [CrossRef]
- Sun, Z.; Song, H.; Sun, W.; Sun, J. Effects of continual burial by sediment on morphological traits and dry mass allocation of Suaeda salsa seedlings in the Yellow River estuary: An experimental study. Ecol. Eng. 2014, 68, 176–183. [Google Scholar] [CrossRef]
- Cui, H.; Bai, J.; Du, S.; Wang, J.; Keculah, G.N.; Wang, W.; Zhang, G.; Jia, J. Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta. Environ. Pollut. 2021, 286, 117400. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Lei, D.; Ying, H. An Analysis of Dynamic Monitoring and Landscape Pattern Change of Suaeda salsa Wetlands in Panjin Using Remote Sensing Technology. Wetl. Sci. Manag. 2017, 13, 31–36. [Google Scholar] [CrossRef]
- Song, L.; Mou, X.; Liu, X. Anthropogenic effect on wetland vegetation growth in the Yellow River Delta. Ecol. Environ. Sci. 2019, 28, 2307–2314. [Google Scholar]
- Zhang, J.; Zhang, Y.; Lloyd, H.; Zhang, Z.; Li, D. Rapid Reclamation and Degradation of Suaeda salsa Saltmarsh along Coastal China’s Northern Yellow Sea. Land 2021, 10, 835. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Y.; Lu, P.; Liu, M.; Sun, P.; Zhang, Z. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. Environ. Pollut. 2021, 287, 117641. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Chen, L.; Yang, H.; Wang, G.; Wang, C.; Dong, X. Effects of excessive nitrogen on nitrogen uptake and transformation in the wetland soils of Liaohe estuary, northeast China. Sci. Total Environ. 2021, 791, 148228. [Google Scholar] [CrossRef]
- Yang, C.; Lv, D.; Jiang, S.; Lin, H.; Sun, J.; Li, K.; Sun, J. Soil salinity regulation of soil microbial carbon metabolic function in the Yellow River Delta, China. Sci. Total Environ. 2021, 790, 148258. [Google Scholar] [CrossRef]
- Subrina, T.; Medeiros, S.C.; Arvind, S. Consistent Long-Term Monthly Coastal Wetland Vegetation Monitoring Using a Virtual Satellite Constellation. Remote Sens. 2021, 13, 438. [Google Scholar] [CrossRef]
- Xie, Z.; Phinn, S.R.; Game, E.T.; Pannell, D.J.; Hobbs, R.J.; Briggs, P.R.; Beutel, T.S.; Holloway, C.; McDonald-Madden, E. Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands—A first step towards identifying degraded lands for conservation (vol 232, 111317, 2019). Remote Sens. Environ. 2020, 241, 111317. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Zou, Z.H.; Hou, L.Y.; Qin, Y.W.; Dong, J.W.; Doughty, R.B.; Chen, B.Q.; Zhang, X.; Cheng, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. Isprs J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Villa, P.; Giardino, C.; Mantovani, S.; Tapete, D.; Vecoli, A.; Braga, F. Mapping Coastal and Wetland Vegetation Communities Using Multi-temporal Sentinel-2 Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 639–644. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh SM, J.; Huang, W.; Granger, J. A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Hütt, C.; Koppe, W.; Miao, Y.; Bareth, G. Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images. Remote Sens. 2016, 8, 684. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2019, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Deslandes, S.; Grenier, M.; Belanger, L.; Lacroix, G.; Zingraff, V. The Wetland Conservation Atlas of the St.Lawrence Valley produced from decision tree classifications of RADARSAT and Landsat images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2002)/24th Canadian Symposium on Remote Sensing, Toronto, ON, Canada, 24–28 June 2002; pp. 2893–2895. [Google Scholar]
- Gong, P.W.; Yu, L.J. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhang, Y.; Song, Z.; Chen, B.; Zhang, Y.; Yuan, W.; Chen, C.; Chen, W.; Ran, X.; Wang, Y. Mapping Coastal Wetlands of the Bohai Rim at a Spatial Resolution of 10 m Using Multiple Open-Access Satellite Data and Terrain Indices. Remote Sens. 2020, 12, 4114. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Qu, X.; Liu, M.; Li, C.; Yin, H.; Chang, Y.; Hu, Y. Evaluation and prediction of the comprehensive carrying capacity in the Bohai ring region. Chin. J. Soil Sci. 2020, 51, 552–560. [Google Scholar] [CrossRef]
- Zhang, T.; Chang, J.; Ma, Y.; Sun, Y.; Liu, C. Study on the Evolution Characteristics of Coastal Wetlands of Bohai Sea in Shandong Province under the Influence of Human Activities. J. Coast. Res. 2020, 105, 28–32. [Google Scholar] [CrossRef]
- Ding, X.; Shan, X.; Chen, Y.; Jin, X.; Rahman, F. Dynamics of shoreline and land reclamation from 1985 to 2015 in the Bohai Sea, China. J. Geogr. Sci. 2019, 29, 2031–2046. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Hu, Y.; Liu, M.; Li, C.; Lv, J. Ecological and Environmental Effects of Estuarine Wetland Loss Using Keyhole and Landsat Data in Liao River Delta, China. Remote Sens. 2021, 13, 311. [Google Scholar] [CrossRef]
- Liu, K.; Yan, J.; Zou, Y.; Song, G.; Zheng, J.; Cui, B. Dynamics of Spatial and Temporal Distribution of Suaeda salsa Salt Marshes in the Yellow River Delta. Wetl. Sci. 2015, 13, 696–701. [Google Scholar]
- Mu, X. Research on the relationship between the evolution process of reclamation, shoreline and wetland changes of Tianjin Binhai new area. Ph.D. Thesis, Tianjin University, Tianjin, China, 2014. [Google Scholar]
- Bedard, F.; Reichert, G.; Dobbins, R.; Trepanier, I. Evaluation of segment-based gap-filled Landsat ETM plus SLC-off satellite data for land cover classification in southern Saskatchewan, Canada. Int. J. Remote Sens. 2008, 29, 2041–2054. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.; Wang, G.; Cao, H. Surface Water Changes in Dongting Lake from 1975 to 2019 Based on Multisource Remote-Sensing Images. Remote Sens. 2021, 13, 1827. [Google Scholar] [CrossRef]
- Mu, M. Inversion Model Study of Suaeda salsa Biomass Based on Hyperspectral Remote Sensing. Master’s Thesis, Dalian Ocean University, Dalian, China, 2016. [Google Scholar]
- Li, W.; Mu, M.; CHen, G.; Liu, W.; Liu, Y.; Liu, C. Research on Remote Sensing Inversion of Suaeda salsa’s Biomass Based on TSAVI for OLI Band Simulation. Spectrosc. Spectr. Anal. 2016, 36, 1418–1422. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, X.; Wang, X.; Ouyang, W. Assessing the Relationship Between Landscape Patterns and Nonpoint-Source Pollution in the Danjiangkou Reservoir Basin in China. Jawra J. Am. Water Resour. Assoc. 2012, 48, 1162–1177. [Google Scholar] [CrossRef]
- Li, X.Z.; He, H.S.; Bu, R.C.; Wen, Q.C.; Chang, Y.; Hu, Y.M.; Li, Y.H. The adequacy of different landscape metrics for various landscape patterns. Pattern Recognit. 2005, 38, 2626–2638. [Google Scholar] [CrossRef]
- Luo, H.; Chen, L.; Jiang, Y.; Li, C.; Zhou, F.; Wu, J. Landscape pattern changes and analysis for the intergration and optimization of natural protected areas: A ase study on sinan county of Guizhou province. Acta Ecol. Sin. 2021, 41, 8076–8086. [Google Scholar] [CrossRef]
- Kova-Andri, E.; Brana, J.; Gvozdi, V. Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecol. Inform. 2009, 4, 117–122. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Bakheit, C.S.; Al-Alawi, S.M. Principle Component and Multiple Regression Analysis in Modelling of Ground-level Zone and Factors Affecting its Concentrations. Environ. Model. Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Cade, B.S.; Noon, B.R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [Google Scholar] [CrossRef]
- Qi, X.; Liang, F.; Yuan, W.; Zhang, T.; Li, J. Factors influencing farmers’ adoption of eco-friendly fertilization technology in grain production: An integrated spatial-econometric analysis in China. J. Clean. Prod. 2021, 310, 127536. [Google Scholar] [CrossRef]
- Jing, H.; Xiaoqin, C.; Zhong, Z.; Yue, G.; Longqin, L.; Hongyuan, L. Quantifying the temporal-spatial scale dependence of the driving mechanisms underlying vegetation coverage in coastal wetlands. Catena 2021, 204, 105435. [Google Scholar] [CrossRef]
- Huang, X.; He, J.; Zhang, M. Effects of different water level conditions on germination and growth of Suaeda salsa. Environ. Ecol. 2019, 1, 18–22. [Google Scholar]
- Song, J.; Wang, B. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann. Bot. 2015, 115, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yu, W.; Ji, R.; Zhao, Y.; Feng, R.; Jia, Q.; Wu, J. Dynamic Response of Phragmites australis and Suaeda salsa to Climate Change in the Liaohe Delta Wetland. J. Meteorol. Res. 2021, 35, 157–171. [Google Scholar] [CrossRef]
- Wen, G. The Temporal and Spatial Variation of Suaeda salsa in Liaohe Estuary from 1997 to 2018; China University of Geosciences: Beijing, China, 2020. [Google Scholar]
- Rodriguez, J.F.; Saco, P.M.; Sandi, S.; Saintilan, N.; Riccardi, G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat. Commun. 2017, 8, 16094. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Z.; Wang, D.; Shi, Z.; Zhu, Y. Interactions of soil water content heterogeneity and species diversity patterns in semi-arid steppes on the Loess Plateau of China. J. Hydrol. 2014, 519, 1362–1367. [Google Scholar] [CrossRef]
- Guan, B.; Zhang, L.; Li, M.; Zhang, H.; Zhang, X.; Han, G.; Yu, J. The sediment burial depth and salinity control the early developments of Suaeda salsa in the Yellow River Delta. Nord. J. Bot. 2021, 39. [Google Scholar] [CrossRef]
- Cai, J.; Fan, J.; Liu, X.; Sun, K.; Wang, W.; Zhang, M.; Li, H.; Xu, H.; Kong, W.; Yu, F. Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities. Sci. Total Environ. 2021, 788, 147707. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xiao, J.; Lei, W.; Du, J.; Li, Z.; Cong, P.; Hou, W.; Zhang, J.; Chen, L.; Zhang, Y.; et al. Human activities accelerated the degradation of saline seepweed red beaches by amplifying top-down and bottom-up forces. Ecosphere 2018, 9, e02352. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.J.; Phinn, S.R.; Dewitt, M.; Ferrari, R.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Sathya, M.; Verma, S.; Kumar, A.; Jayakumar, S. Assessment of Anthropogenic Pressure and Population Attitude for the Conservation of Kanwar Wetland, Begusarai, India: A Case Study. Pollut. Water Manag. Resour. Strat. Scarcity 2021, 22–46. [Google Scholar] [CrossRef]
Category | Variable | Description | Abbr. | Type of Variable |
---|---|---|---|---|
Dependent (Y) | 0-Disappear; 1-Appear | Dichotomous | ||
Topography | Independent(X1) | Distance to coastline | DISC | Continuous |
Independent(X2) | DEM | Elevation | Continuous | |
Climate | Independent(X3) | Precipitationmean a year | Premean | Continuous |
Independent(X4) | Precipitationmean April to July | 4–7 Premean | Continuous | |
Independent(X5) | Temperaturemean a year | Temmean | Continuous | |
Independent(X6) | Temperaturemax a year | Temmax | Continuous | |
Independent(X7) | Temperaturemean March to May | 3–5 Temmean | Continuous |
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | V* (%) | C* (%) | Total | V* (%) | C* (%) | Total | V* (%) | C* (%) | |
1 | 4.974 | 71.064 | 71.064 | 4.974 | 71.064 | 71.064 | 4.951 | 70.730 | 70.730 |
2 | 1.256 | 17.937 | 89.000 | 1.256 | 17.937 | 89.000 | 1.279 | 18.271 | 89.000 |
3 | 0.727 | 10.383 | 99.383 | ||||||
4 | 0.034 | 0.481 | 99.864 | ||||||
5 | 0.009 | 0.122 | 99.986 | ||||||
6 | 0.001 | 0.012 | 99.998 | ||||||
7 | 0.000 | 0.002 | 100.000 |
Original Component Matrix | Rotated Component Matrix | |||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
4–7 Premean | 0.999 | 0.998 | ||
Premean | 0.998 | 0.997 | ||
Temmax | 0.998 | 0.997 | ||
T35mean | 0.994 | 0.991 | ||
Temmean | 0.984 | 0.988 | ||
DEM | −0.804 | 0.805 | ||
DISC | 0.775 | −0.785 |
Variable | Coefficient | Std. Error | Wald | Sig. | Exp(B) |
---|---|---|---|---|---|
DEM | −0.095 ** | 0.025 | 14.229 | 0.000 | 0. 910 |
Tmean | −0.013 * | 0.003 | 25.219 | 0.000 | 0.987 |
Tmax | 3.191 ** | 0.779 | 16.775 | 0.000 | 24.306 |
3–5 Tmean | −0.072 ** | 0.015 | 22.672 | 0.000 | 0.930 |
Premean | −0.008 ** | 0.002 | 16.760 | 0.000 | 0.992 |
4–7 Premean | 82.048 ** | 17.670 | 21.560 | 0.000 | 4.293e35 |
DISC | 23.765 ** | 5.395 | 19.404 | 0.000 | 2.094e10 |
B | −0.674 | 0.322 | 4.377 | 0.036 | 0.510 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Hu, Y.; Liu, M.; Li, C.; Chang, Y. Evolutions of 30-Year Spatio-Temporal Distribution and Influencing Factors of Suaeda salsa in Bohai Bay, China. Remote Sens. 2022, 14, 138. https://doi.org/10.3390/rs14010138
Yin H, Hu Y, Liu M, Li C, Chang Y. Evolutions of 30-Year Spatio-Temporal Distribution and Influencing Factors of Suaeda salsa in Bohai Bay, China. Remote Sensing. 2022; 14(1):138. https://doi.org/10.3390/rs14010138
Chicago/Turabian StyleYin, Hongyan, Yuanman Hu, Miao Liu, Chunlin Li, and Yu Chang. 2022. "Evolutions of 30-Year Spatio-Temporal Distribution and Influencing Factors of Suaeda salsa in Bohai Bay, China" Remote Sensing 14, no. 1: 138. https://doi.org/10.3390/rs14010138
APA StyleYin, H., Hu, Y., Liu, M., Li, C., & Chang, Y. (2022). Evolutions of 30-Year Spatio-Temporal Distribution and Influencing Factors of Suaeda salsa in Bohai Bay, China. Remote Sensing, 14(1), 138. https://doi.org/10.3390/rs14010138