Methodology of Calculating the Number of Trees Based on ALS Data for Forestry Applications for the Area of Samławki Forest District
Abstract
:1. Introduction
- Possibility of precise description and measurement of the forest’s objects and trees.
- Acquiring tree and their heights, trees crown size, number of trees (density),
- details of the vertical structure of the stand (stacking) after ALS data processing.
- Measurement of all trees from the top floor. The ALS technology opens up new possibilities for height detection and measurement and selected other features (e.g., crown width, crown base).
- Speed of data acquisition. There is currently no other method that is as efficient. In this respect, laser scanning technology is much better than field measurements. One ALS mission can last several hours, and the results collected during this time accurately describe hundreds of square kilometers of the area. Interferometric Synthetic Aperture Radar (InSAR) and Polarimetric Interferometry (PolInSAR) become a competition for this technology, while access to data and its development is much more time-consuming [11].
- Data processing automation. Huge data sets can only be processed using fully automatic or semi-automatic algorithms. Automation helps to ensure objectivity while taking measurements and reduces their costs.
- Lack of some flaws typical of photographic images. Land cover models can be presented in any projections, including orthogonal projection. With proper planning, raids have no shadows cast by objects or insufficiently lit place.
2. Materials and Methods
3. Methodology
4. Results
Calculating the Volume of Standing Trees
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning lidar. Photogramm. Eng. Remote Sens. 2002, 66, 1367–5752. [Google Scholar] [CrossRef]
- Ferraz, A.; Saatchi, S.S.; Longo, M.; Clark, D.B. Tropical tree size–frequency distributions from airborne lidar. Ecol. Appl. 2020, 30, e02154. [Google Scholar] [CrossRef] [PubMed]
- Zimble, D.A.; Evans, D.L.; Carlson, G.C.; Parker, R.C.; Grado, S.C.; Gerard, P.D. Characterizing vertical forest structure using small-footprint airborne LiDAR. Remote Sens. Environ. 2003, 87, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Maltamo, M.; Packalén, P.; Yu, X.; Eerikäinen, K.; Hyyppä, J.; Pitkänen, J. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For. Ecol. Manag. 2005, 216, 41–50. [Google Scholar] [CrossRef]
- Lim, K.; Treitz, P.; Wulder, M.; St-Ongé, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 2003, 27, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkänen, J.; Solberg, S.; Wang, Y.; Weinacker, H.; Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest. Forestry 2012, 85, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Kaartinen, H.; Hyyppä, J.; Yu, X.; Vastaranta, M.; Hyyppä, H.; Kukko, A.; Holopainen, M.; Heipke, C.; Hirschmugl, M.; Morsdorf, F.; et al. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 2012, 4, 950–974. [Google Scholar] [CrossRef] [Green Version]
- Wezyk, P.; Tompalski, P.; Kok, R.D.; Szostak, M.; Kukawski, M. Method of the Tree Number Estimation in the Pine Stand Using ALS Data and True Orthoimages. Sylwan 2010, 154, 773–782. [Google Scholar]
- Torralba, A.; Murphy, K.P.; Freeman, W.T. Using the forest to see the trees: Exploiting context for visual object detection and localization. Commun. ACM. 2010, 53, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Hajnsek, I.; Kugler, F.; Lee, S.K.; Papathanassiou, K.P. Tropical-forest-parameter estimation by means of Pol-InSAR: The INDREX-II campaign. IEEE Trans. Geosci. Remote Sens. 2009, 47, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Solberg, S.; Naesset, E.; Bollandsas, O.M. Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm. Eng. Remote Sens. 2006, 72, 1369–1378. [Google Scholar] [CrossRef]
- Magnard, C.; Morsdorf, F.; Small, D.; Stilla, U.; Schaepman, M.E.; Meier, E. Single tree identification using airborne multibaseline SAR interferometry data. Remote Sens. Environ. 2016, 186, 567–580. [Google Scholar] [CrossRef]
- Zhou, J.; Proisy, C.; Descombes, X.; Hedhli, I.; Barbier, N.; Zerubia, J.; Gastellu-Etchegorry, J.P.; Couteron, P. Tree crown detection in high resolution optical and lidar images of tropical forest. Remote. Sens. Agric. Ecosyst. Hydrol. XII 2010, 7824, 78240Q. [Google Scholar]
- Pendyala, G.K.; Kalluri, H.K.; Roa, C.V. Dense DSM and DTM Point Cloud Generation using CARTOSAT-2E satellite images for high-resulotion applications. J. Indian Soc. Remote Sens. 2019, 47, 2085–2096. [Google Scholar] [CrossRef]
- Won-Jin, L.; Chang-Wook, L. Forest Canopy Height Estimation Using Multiplatform Remote Sensing Dataset. Hindawi. J. Sens. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Paluch, R. Site index of common oak (Quercus robur L.) under the canopy of Scots pine stands. Sylwan 2020, 164, 179–186. [Google Scholar]
Forest Address | 13b | 30a |
---|---|---|
tree species | Larch (Larix Mill) | Oak (Quercus) |
the average age of the trees | 19 | 60 |
the valuation class | I | I |
Forest Address | 13b | 30a |
---|---|---|
No. of all points | 928,493 | 998,272 |
No. of points in layer of trees | 675,792 | 676,149 |
No. of points in layer of ground | 252,701 | 322,123 |
Parameters | Forest Address | ||
---|---|---|---|
13b | 30a | ||
Area [ha] | 4.06 | 4.64 | |
No. of Trees Detected | 7285 | 2356 | |
Tress height [m] | [<4.99] | 960 | 33 |
[5.00–5.99] | 1300 | 25 | |
[6.00–6.99] | 1703 | 28 | |
[7.00–7.99] | 1996 | 22 | |
[8.00–8.99] | 650 | 23 | |
[9.00–9.99] | 676 | 17 | |
[10.00–10.99] | - | 24 | |
[11.00–11.99] | - | 29 | |
[12.00–12.99] | - | 10 | |
[13.00–13.99] | - | 33 | |
[14.00–14.99] | - | 45 | |
[15.00 –15.99] | - | 32 | |
[16.00 –16.99] | - | 41 | |
[17.00 –17.99] | - | 100 | |
[18.00 –18.99] | - | 180 | |
[19.00 –19.99] | - | 153 | |
[20.00 –20.99] | - | 151 | |
[21.00–21.99] | - | 150 | |
[22.00–22.99] | - | 210 | |
[23.00–23.99] | - | 181 | |
[24.00–24.99] | - | 364 | |
[25.00–25.99] | - | 505 |
Forest Address | 13b | 30a | |||||
---|---|---|---|---|---|---|---|
Tree Species | Larch | Oak | |||||
Parameters | Mean dbh [m] | csa [m2] | Mean dbh [m] | csa [m2] | |||
Tress height [m] | [<4.99] | 0.090 | 0.006 | 0.421 | 0.068 | 0.004 | 0.470 |
[5.00–5.99] | 0.105 | 0.009 | 0.421 | 0.070 | 0.004 | 0.470 | |
[6.00–6.99] | 0.122 | 0.012 | 0.421 | 0.079 | 0.005 | 0.470 | |
[7.00–7.99] | 0.139 | 0.015 | 0.421 | 0.087 | 0.006 | 0.470 | |
[8.00–8.99] | 0.155 | 0.019 | 0.421 | 0.096 | 0.007 | 0.470 | |
[9.00–9.99] | 0.114 | 0.010 | 0.421 | 0.105 | 0.009 | 0.470 | |
[10.00–10.99] | - | - | - | 0.122 | 0.012 | 0.470 | |
[11.00–11.99] | - | - | - | 0.135 | 0.014 | 0.470 | |
[12.00–12.99] | - | - | - | 0.148 | 0.017 | 0.470 | |
[13.00–13.99] | - | - | - | 0.165 | 0.021 | 0.470 | |
[14.00–14.99] | - | - | - | 0.183 | 0.026 | 0.470 | |
[15.00–15.99] | - | - | - | 0.200 | 0.031 | 0.470 | |
[16.00–16.99] | - | - | - | 0.217 | 0.037 | 0.470 | |
[17.00–17.99] | - | - | - | 0.238 | 0.044 | 0.470 | |
[18.00–18.99] | - | - | - | 0.261 | 0.053 | 0.470 | |
[19.00–19.99] | - | - | - | 0.295 | 0.068 | 0.470 | |
[20.00–20.99] | - | - | - | 0.321 | 0.081 | 0.470 | |
[21.00–21.99] | - | - | - | 0.347 | 0.095 | 0.470 | |
[22.00–22.99] | - | - | - | 0.382 | 0.115 | 0.470 | |
[23.00–23.99] | - | - | - | 0.425 | 0.142 | 0.470 | |
[24.00–24.99] | - | - | - | 0.477 | 0.179 | 0.470 | |
[25.00–25.99] | - | - | - | 0.538 | 0.227 | 0.470 |
Forest Address | 13b | 30a | |||||
---|---|---|---|---|---|---|---|
Tree Species | Larch | Oak | |||||
Parameters | V [m3] | No. of Trees Detected | Total V [m3] | V [m3] | No. of Trees Detected | Total V [m3] | |
Tress height [m] | [<4.99] | 0.013 | 960 | 12.849 | 0.009 | 33 | 0.281 |
[5.00–5.99] | 0.022 | 1 300 | 28.420 | 0.011 | 25 | 0.271 | |
[6.00–6.99] | 0.034 | 1 703 | 58.639 | 0.017 | 28 | 0.451 | |
[7.00–7.99] | 0.051 | 1 996 | 101.960 | 0.023 | 22 | 0.491 | |
[8.00–8.99] | 0.071 | 650 | 46.448 | 0.032 | 23 | 0.704 | |
[9.00–9.99] | 0.043 | 676 | 29.034 | 0.042 | 17 | 0.692 | |
[10.00–10.99] | - | - | - | 0.063 | 24 | 1.450 | |
[11.00–11.99] | - | - | - | 0.084 | 29 | 2.340 | |
[12.00–12.99] | - | - | - | 0.110 | 10 | 1.051 | |
[13.00–13.99] | - | - | - | 0.147 | 33 | 4.641 | |
[14.00–14.99] | - | - | - | 0.193 | 45 | 8.340 | |
[15.00–15.99] | - | - | - | 0.246 | 32 | 7.556 | |
[16.00–16.99] | - | - | - | 0.308 | 41 | 12.109 | |
[17.00–17.99] | - | - | - | 0.392 | 100 | 37.618 | |
[18.00–18.99] | - | - | - | 0.498 | 180 | 85.956 | |
[19.00–19.99] | - | - | - | 0.669 | 153 | 98.250 | |
[20.00–20.99] | - | - | - | 0.832 | 151 | 120.552 | |
[21.00–21.99] | - | - | - | 1.019 | 150 | 146.602 | |
[22.00–22.99] | - | - | - | 1.291 | 210 | 260.041 | |
[23.00–23.99] | - | - | - | 1.667 | 181 | 289.491 | |
[24.00–24.99] | - | - | - | 2.188 | 364 | 763.916 | |
[25.00–25.99] | - | - | - | 2.895 | 505 | 1402.157 | |
The volumes of standing trees for forest address | 277.351 m3 | 3244.960 m3 |
Forest Address | 13b | 30a | ||
---|---|---|---|---|
Tree Species | Larch | Oak | ||
source | Results after presented methodology | FMP | Results after presented methodology | FMP |
volume of the stand per 1ha [m3/ha] | 68.313 | 90.000 | 699.344 | 665.000 |
volume of the stand for the entire forest address [m3/ha] | 277.351 | 365.000 | 3244.960 | 3091.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczak-Bąk, W.; Janicka, J.; Kozakiewicz, T.; Chudzikiewicz, K.; Bąk, G. Methodology of Calculating the Number of Trees Based on ALS Data for Forestry Applications for the Area of Samławki Forest District. Remote Sens. 2022, 14, 16. https://doi.org/10.3390/rs14010016
Błaszczak-Bąk W, Janicka J, Kozakiewicz T, Chudzikiewicz K, Bąk G. Methodology of Calculating the Number of Trees Based on ALS Data for Forestry Applications for the Area of Samławki Forest District. Remote Sensing. 2022; 14(1):16. https://doi.org/10.3390/rs14010016
Chicago/Turabian StyleBłaszczak-Bąk, Wioleta, Joanna Janicka, Tomasz Kozakiewicz, Krystian Chudzikiewicz, and Grzegorz Bąk. 2022. "Methodology of Calculating the Number of Trees Based on ALS Data for Forestry Applications for the Area of Samławki Forest District" Remote Sensing 14, no. 1: 16. https://doi.org/10.3390/rs14010016
APA StyleBłaszczak-Bąk, W., Janicka, J., Kozakiewicz, T., Chudzikiewicz, K., & Bąk, G. (2022). Methodology of Calculating the Number of Trees Based on ALS Data for Forestry Applications for the Area of Samławki Forest District. Remote Sensing, 14(1), 16. https://doi.org/10.3390/rs14010016