Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Overall Approach
2.3. Geodatabase Development
2.3.1. Geologic Data
2.3.2. Topographic Data
2.3.3. Layers Derived from the Geologic and Topographic Data
2.3.4. Field Work
2.3.5. Modeling
3. Results
3.1. Types of Groundwater Discharge
3.2. Manual Identification of Groundwater Discharge
3.2.1. Hillslope Groundwater Discharge
3.2.2. Aquifer-Outcrop Groundwater Discharge
3.2.3. Field Verification
3.3. Modeled Identification of Groundwater Discharge
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rains, M.C.; Fogg, G.E.; Harter, T.; Dahlgren, R.A.; Williamson, R.J. The role of perched aquifers in hydrological connectivity and biogeochemical processes in vernal pool landscapes, Central Valley, California. Hydrol. Process. 2006, 20, 1157–1175. [Google Scholar] [CrossRef]
- Neff, B.P.; Rosenberry, D.O.; Leibowitz, S.G.; Mushet, D.M.; Golden, H.E.; Rains, M.; Brooks, J.R.; Lane, C.R. A Hydrologic Landscapes Perspective on Groundwater Connectivity of Depressional Wetlands. Water 2019, 12, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornelsen, K.; Coulibaly, P. Synthesis review on groundwater discharge to surface water in the Great Lakes Basin. J. Great Lakes Res. 2014, 40, 247–256. [Google Scholar] [CrossRef]
- Solana, M.X.; Londoño, O.M.Q.; Romanelli, A.; Donna, F.; Martínez, D.E.; Weinzettel, P. Connectivity of temperate shallow lakes to groundwater in the Pampean Plain, Argentina: A remote sensing and multi-tracer approach. Groundw. Sustain. Dev. 2021, 13, 100556. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water: A Single Resource; Circular 1139; US Geological Survey: Reston, VA, USA, 1998. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Moore, W.S.; Blanton, J.O.; Joye, S. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J. Geophys. Res. Space Phys. 2006, 111, 111. [Google Scholar] [CrossRef]
- Moore, W.S. The Effect of Submarine Groundwater Discharge on the Ocean. Annu. Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.; Daanen, R.P.; Thompson, A.M. Base Flow/Groundwater Flow. In Encyclopedia of Snow, Ice and Glaciers; Encyclopedia of Earth Sciences Series; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Guérin, A.; Devauchelle, O.; Robert, V.; Kitou, T.; Dessert, C.; Quiquerez, A.; Allemand, P.; Lajeunesse, E. Stream-Discharge Surges Generated by Groundwater Flow. Geophys. Res. Lett. 2019, 46, 7447–7455. [Google Scholar] [CrossRef] [Green Version]
- Caissie, D. The thermal regime of rivers: A review. Freshw. Biol. 2006, 51, 1389–1406. [Google Scholar] [CrossRef]
- Callahan, M.K.; Rains, M.; Bellino, J.C.; Walker, C.M.; Baird, S.J.; Whigham, D.F.; King, R.S. Controls on Temperature in Salmonid-Bearing Headwater Streams in Two Common Hydrogeologic Settings, Kenai Peninsula, Alaska. JAWRA J. Am. Water Resour. Assoc. 2014, 51, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Luke, S.H.; Luckai, N.J.; Burke, J.M.; Prepas, E.E. Riparian areas in the Canadian boreal forest and linkages with water quality in streams. Environ. Rev. 2007, 15, 79–97. [Google Scholar] [CrossRef]
- Callahan, M.K.; Whigham, D.F.; Rains, M.; Rains, K.C.; King, R.S.; Walker, C.M.; Maurer, J.R.; Baird, S.J. Nitrogen Subsidies from Hillslope Alder Stands to Streamside Wetlands and Headwater Streams, Kenai Peninsula, Alaska. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 478–492. [Google Scholar] [CrossRef]
- Hiatt, D.L.; Robbins, C.J.; Back, J.A.; Kostka, P.K.; Doyle, R.D.; Walker, C.M.; Rains, M.C.; Whigham, D.F.; King, R.S. Catchment-scale alder cover controls nitrogen fixation in boreal headwater streams. Freshw. Sci. 2017, 36, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Power, G.; Brown, R.S.; Imhof, J.G. Groundwater and Fish—Insights from Northern North America. Hydrol. Process. 1999, 13, 401–422. [Google Scholar] [CrossRef]
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2015; Circular 1441; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Earthscan: London, UK; Sterling, VA, USA, 2004; ISBN 978-1-85383-927-6. [Google Scholar]
- Khalil, M.A.; Bobst, A.; Mosolf, J. Utilizing 2D Electrical Resistivity Tomography and Very Low Frequency Electromagnetics to Investigate the Hydrogeology of Natural Cold Springs Near Virginia City, Southwest Montana. Pure Appl. Geophys. PAGEOPH 2018, 175, 3525–3538. [Google Scholar] [CrossRef]
- Gleason, C.L.; Frisbee, M.D.; Rademacher, L.K.; Sada, D.W.; Meyers, Z.P.; Knott, J.R.; Hedlund, B.P. Hydrogeology of desert springs in the Panamint Range, California, USA: Geologic controls on the geochemical kinetics, flowpaths, and mean residence times of springs. Hydrol. Process. 2020, 34, 2923–2948. [Google Scholar] [CrossRef]
- Mocior, E.; Rzonca, B.; Siwek, J.; Plenzler, J.; Płaczkowska, E.; Dabek, N.; Jaskowiec, B.; Potoniec, P.; Roman, S.; Zdziebko, D. Determinants of the distribution of springs in the upper part of a flysch ridge in the Bieszczady Mountains in southeastern Poland. Episodes 2015, 38, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.; Merrifield, M. Mapping Groundwater Dependent Ecosystems in California. PLoS ONE 2010, 5, e11249. [Google Scholar] [CrossRef] [Green Version]
- Pourtaghi, Z.S.; Pourghasemi, H.R. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol. J. 2014, 22, 643–662. [Google Scholar] [CrossRef]
- Lange, H.; Sippel, S. Machine Learning Applications in Hydrology. In Forest-Water Interactions; Levia, D.F., Carlyle-Moses, D.E., Iida, S., Michalzik, B., Nanko, K., Tischer, A., Eds.; Ecological Studies; Springer International Publishing: Cham, Switzerland, 2020; Volume 240, pp. 233–257. ISBN 978-3-030-26085-9. [Google Scholar]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Shen, C.; Chen, X.; Laloy, E. Editorial: Broadening the Use of Machine Learning in Hydrology. Front. Water 2021, 3, 681023. [Google Scholar] [CrossRef]
- Sahoo, S.; Russo, T.A.; Elliott, J.; Foster, I. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resour. Res. 2017, 53, 3878–3895. [Google Scholar] [CrossRef]
- Rahman, A.S.; Hosono, T.; Quilty, J.M.; Das, J.; Basak, A. Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms. Adv. Water Resour. 2020, 141, 103595. [Google Scholar] [CrossRef]
- Afan, H.A.; Osman, A.I.A.; Essam, Y.; Ahmed, A.N.; Huang, Y.F.; Kisi, O.; Sherif, M.; Sefelnasr, A.; Chau, K.-W.; El-Shafie, A. Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1420–1439. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena 2016, 137, 360–372. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A.; Brouziyne, Y. Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agric. Water Manag. 2021, 245, 106625. [Google Scholar] [CrossRef]
- Shiri, N.; Shiri, J.; Yaseen, Z.M.; Kim, S.; Chung, I.-M.; Nourani, V.; Zounemat-Kermani, M. Development of artificial intelligence models for well groundwater quality simulation: Different modeling scenarios. PLoS ONE 2021, 16, e0251510. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Yang, Q.; Zheng, Y. Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History. Environ. Sci. Technol. 2020, 54, 9454–9463. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.A.; Tsujimura, M.; Ha, N.T.; Nguyen, V.T.; Van Binh, D.; Dang, T.D.; Doan, Q.-V.; Bui, D.T.; Ngoc, T.A.; Phu, L.V.; et al. Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecol. Indic. 2021, 127, 107790. [Google Scholar] [CrossRef]
- Hussein, E.A.; Thron, C.; Ghaziasgar, M.; Bagula, A.; Vaccari, M. Groundwater Prediction Using Machine-Learning Tools. Algorithms 2020, 13, 300. [Google Scholar] [CrossRef]
- Jaafarzadeh, M.S.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Rouhani, H. Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Sci. Rep. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Winter, T.C. The concept of hydrologic landscapes. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 335–349. [Google Scholar] [CrossRef]
- Wolock, D.M.; Winter, T.C.; McMahon, G. Delineation and Evaluation of Hydrologic-Landscape Regions in the United States Using Geographic Information System Tools and Multivariate Statistical Analyses. Environ. Manag. 2004, 34, S71–S88. [Google Scholar] [CrossRef] [PubMed]
- Wigington, P.J.; Leibowitz, S.G.; Comeleo, R.L.; Ebersole, J. Oregon Hydrologic Landscapes: A Classification Framework1. JAWRA J. Am. Water Resour. Assoc. 2012, 49, 163–182. [Google Scholar] [CrossRef]
- Brydsten, L. Modelling Groundwater Discharge Areas Using Only Digital Elevation Models as Input Data; Swedish Nuclear Fuel and Waste Management: Stockholm, Sweden, 2006; p. 18. [Google Scholar]
- Tweed, S.O.; Leblanc, M.; Webb, J.; Lubczynski, M.W. Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeol. J. 2006, 15, 75–96. [Google Scholar] [CrossRef]
- Haitjema, H.M.; Mitchell-Bruker, S. Are Water Tables a Subdued Replica of the Topography? Ground Water 2005, 43, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Devito, K.; Creed, I.; Gan, T.; Mendoza, C.; Petrone, R.; Silins, U.; Smerdon, B. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? Hydrol. Process. 2005, 19, 1705–1714. [Google Scholar] [CrossRef]
- Toth, J. Groundwater discharge: A common generator of diverse geologic and morphologic phenomena. Int. Assoc. Sci. Hydrol. Bull. 1971, 16, 7–24. [Google Scholar] [CrossRef]
- Huang, X.; Niemann, J.D. Modelling the potential impacts of groundwater hydrology on long-term drainage basin evolution. Earth Surf. Process. Landforms 2006, 31, 1802–1823. [Google Scholar] [CrossRef]
- Iverson, R.M.; Reid, M.E. Gravity-driven groundwater flow and slope failure potential: 1. Elastic Effective-Stress Model. Water Resour. Res. 1992, 28, 925–938. [Google Scholar] [CrossRef]
- Reid, M.E.; Iverson, R.M. Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity. Water Resour. Res. 1992, 28, 939–950. [Google Scholar] [CrossRef]
- UACED (University of Alaska Center for Economic Development). Kenai Peninsula 2021–2026 Comprehensive Economic Development Strategy; Kenai Peninsula Economic Development District: Kenai, AK, USA, 2021; p. 97. [Google Scholar]
- Walker, C.M.; Whigham, D.F.; Bentz, I.S.; Argueta, J.M.; King, R.S.; Rains, M.C.; Simenstad, C.A.; Guo, C.; Baird, S.J.; Field, C.J. Linking landscape attributes to salmon and decision-making in the southern Kenai Lowlands, Alaska, USA. Ecol. Soc. 2021, 26, 1. [Google Scholar] [CrossRef]
- ADLWD (Alaska Department of Labor and Workforce Development). Alaska Population Projections 2019–2045; Alaska Department of Labor and Workforce Development: Juneau, AK, USA, 2020.
- HSWCD (Homer Soil and Water Conservation District). Growing Local Food: A Survey of Commercial Producers on the Southern Kenai Peninsula; Homer Soil and Water Conservation District: Homer, AK, USA, 2018. [Google Scholar]
- Glass, R. Ground-Water Conditions and Quality in the Western Part of Kenai Peninsula, Southcentral Alaska; Open-File Rep. 96-446; US Geological Survey: Reston, VA, USA, 1996. [Google Scholar] [CrossRef]
- Baughman, C.A.; Loehman, R.A.; Magness, D.R.; Saperstein, L.B.; Sherriff, R.L. Four Decades of Land-Cover Change on the Kenai Peninsula, Alaska: Detecting Disturbance-Influenced Vegetation Shifts Using Landsat Legacy Data. Land 2020, 9, 382. [Google Scholar] [CrossRef]
- Klein, E.; Berg, E.E.; Dial, R. Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Can. J. For. Res. 2005, 35, 1931–1941. [Google Scholar] [CrossRef]
- Berg, E.E.; Hillman, K.M.; Dial, R.; DeRuwe, A. Recent woody invasion of wetlands on the Kenai Peninsula Lowlands, south-central Alaska: A major regime shift after 18 000 years of wet Sphagnum–sedge peat recruitment. Can. J. For. Res. 2009, 39, 2033–2046. [Google Scholar] [CrossRef]
- Magness, D.R.; Morton, J.M. Using climate envelope models to identify potential ecological trajectories on the Kenai Peninsula, Alaska. PLoS ONE 2018, 13, e0208883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USGS (U.S. Geological Survey). The National Map U.S. Geological Survey’s (USGS) National Geospatial Program. Available online: https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map (accessed on 30 August 2021).
- Karlstrom, T.N. Quaternary Geology of the Kenai Lowland and Glacial History of the Cook Inlet Region, Alaska; Professional Paper 443; US Geological Survey: Reston, VA, USA, 1964. [Google Scholar] [CrossRef]
- Wilson, F.H.; Hults, C.P. Geology of the Prince William Sound and Kenai Peninsula Region, Alaska; Scientific Investigations Map 3110; US Geological Survey: Anchorage, AK, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.; Johnson, P. Ground-Water Reconnaissance of Part of the Lower Kenai Peninsula, Alaska; Open-File Rep. 81-905; US Geological Survey: Reston, VA, USA, 1981. [Google Scholar] [CrossRef]
- Spencer, E.W. Geologic Maps: A Practical Guide to Preparation and Interpretation; Waveland Press: Long Grove, IL, USA, 2017; ISBN 1-4786-3488-X. [Google Scholar]
- Heine, R.A.; Lant, C.L.; Sengupta, R.R. Development and Comparison of Approaches for Automated Mapping of Stream Channel Networks. Ann. Assoc. Am. Geogr. 2004, 94, 477–490. [Google Scholar] [CrossRef]
- Jaeger, K.L.; Montgomery, D.R.; Bolton, S.M. Channel and Perennial Flow Initiation in Headwater Streams: Management Implications of Variability in Source-Area Size. Environ. Manag. 2007, 40, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Detty, J.M.; McGuire, K.J. Topographic controls on shallow groundwater dynamics: Implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment. Hydrol. Process. 2010, 24, 2222–2236. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A Terrain Ruggedness Index That Quantifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Korzeniowska, K.; Pfeifer, N.; Landtwing, S. Mapping gullies, dunes, lava fields, and landslides via surface roughness. Geomorphology 2018, 301, 53–67. [Google Scholar] [CrossRef]
- Walker, C.M.; King, R.S.; Whigham, D.F.; Baird, S.J. Landscape and Wetland Influences on Headwater Stream Chemistry in the Kenai Lowlands, Alaska. Wetlands 2012, 32, 301–310. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Tarboton, D. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Horvath, E.K.; Christensen, J.R.; Mehaffey, M.H.; Neale, A.C. Building a potential wetland restoration indicator for the contiguous United States. Ecol. Indic. 2017, 83, 463–473. [Google Scholar] [CrossRef]
- Rains, M.; Mount, J.F. Origin of shallow ground water in an alluvial aquifer as determined by isotopic and chemical procedures. Ground Water 2002, 40, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- King, R.S.; Walker, C.M.; Whigham, D.F.; Baird, S.J.; Back, J.A. Catchment topography and wetland geomorphology drive macroinvertebrate community structure and juvenile salmonid distributions in south-central Alaska headwater streams. Freshw. Sci. 2012, 31, 341–364. [Google Scholar] [CrossRef] [Green Version]
- Souissi, D.; Msaddek, M.H.; Zouhri, L.; Chenini, I.; El May, M.; Dlala, M. Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia. Hydrol. Sci. J. 2018, 63, 251–268. [Google Scholar] [CrossRef]
- Rhoden, C.M.; Peterman, W.E.; Taylor, C.A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 2017, 5, e3632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.G. Climate warming causes phenological shift in Pink Salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob. Chang. Biol. 2008, 14, 229–235. [Google Scholar] [CrossRef]
- Bowen, L.; von Biela, V.R.; McCormick, S.D.; Regish, A.M.; Waters, S.C.; Durbin-Johnson, B.; Britton, M.; Settles, M.L.; Donnelly, D.S.; Laske, S.M.; et al. Transcriptomic response to elevated water temperatures in adult migrating Yukon River Chinook salmon (Oncorhynchus tshawytscha). Conserv. Physiol. 2020, 8, coaa084. [Google Scholar] [CrossRef]
- Shaftel, R.S.; King, R.S.; Back, J.A. Breakdown rates, nutrient concentrations, and macroinvertebrate colonization of bluejoint grass litter in headwater streams of the Kenai Peninsula, Alaska. J. N. Am. Benthol. Soc. 2011, 30, 386–398. [Google Scholar] [CrossRef]
- Gutsch, M.K. Dentification and Characterization of Juvenile Coho Salmon Overwintering Habitats and Early Spring Outmigration in the Anchor River Watershed, Alaska; University of Alaska, Fairbanks: Fairbanks, AK, USA, 2011. [Google Scholar]
- Whigham, D.; Walker, C.; Maurer, J.; King, R.; Hauser, W.; Baird, S.; Keuskamp, J.; Neale, P. Watershed influences on the structure and function of riparian wetlands associated with headwater streams—Kenai Peninsula, Alaska. Sci. Total Environ. 2017, 599, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Dekar, M.P.; King, R.S.; Back, J.A.; Whigham, D.; Walker, C.M. Allochthonous inputs from grass-dominated wetlands support juvenile salmonids in headwater streams: Evidence from stable isotopes of carbon, hydrogen, and nitrogen. Freshw. Sci. 2012, 31, 121–132. [Google Scholar] [CrossRef]
Predicted No | Predicted Yes | Total | |
---|---|---|---|
Actual No | 12 | 4 | 16 |
Actual Yes | 1 | 50 | 51 |
Total | 13 | 54 | 67 |
Variable | Permutation Importance (%) |
---|---|
Profile curvature range | 43.2 |
Distance to flowlines | 20.8 |
Elevation | 18.5 |
Terrain ruggedness index | 15.2 |
Flow-weighted slope | 1.8 |
Planform curvature | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerlach, M.E.; Rains, K.C.; Guerrón-Orejuela, E.J.; Kleindl, W.J.; Downs, J.; Landry, S.M.; Rains, M.C. Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams. Remote Sens. 2022, 14, 63. https://doi.org/10.3390/rs14010063
Gerlach ME, Rains KC, Guerrón-Orejuela EJ, Kleindl WJ, Downs J, Landry SM, Rains MC. Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams. Remote Sensing. 2022; 14(1):63. https://doi.org/10.3390/rs14010063
Chicago/Turabian StyleGerlach, Mary E., Kai C. Rains, Edgar J. Guerrón-Orejuela, William J. Kleindl, Joni Downs, Shawn M. Landry, and Mark C. Rains. 2022. "Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams" Remote Sensing 14, no. 1: 63. https://doi.org/10.3390/rs14010063
APA StyleGerlach, M. E., Rains, K. C., Guerrón-Orejuela, E. J., Kleindl, W. J., Downs, J., Landry, S. M., & Rains, M. C. (2022). Using Remote Sensing and Machine Learning to Locate Groundwater Discharge to Salmon-Bearing Streams. Remote Sensing, 14(1), 63. https://doi.org/10.3390/rs14010063