Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plot Design
2.2. Overall Workflow
2.3. Data Collection
2.4. Data Preprocessing
2.5. Index Selection and Calculation
2.6. Data Analysis
2.6.1. Analysis of Variance
2.6.2. Random Forest Classification
2.7. Evaluation of Classification Results
3. Results
3.1. Spectral Characteristics of SCR-Infected Leaves
3.2. Evaluation of Separating Capacity of Reflectance
3.3. Evaluation of Separating Capacity of Indices
3.3.1. Most Indices Were Capable of Differentiating by Disease Severity
3.3.2. Half of the Indices Achieved Perfect Performance under Different Measuring Heights
3.3.3. All indices Were Affected by Leaf Curvature to Varying Degrees except PRI
3.4. Classification Accuracies Based on Different Indices
4. Discussion
4.1. Analysis of Spectral Characteristics
4.2. Sensitivities of Reflectance and Indices under Different Measuring Conditions
4.3. Classification Accuracies of Single Indices and Multi-Indices
4.4. Future Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT-Agriculture, Food and Agricultural Organizations of the United Nations. 2019. Available online: http://faostat3.fao.org/brpwse/Q/QC/E (accessed on 19 July 2021).
- Wang, Y.Q.; Gao, F.; Gao, G.Y.; Zhao, J.Y.; Wang, X.G.; Zhang, R. Production and cultivated area variation in cereal, rice, wheat and maize in China (1998–2016). Agronomy 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Bachik, N.A.; Muhadi, N.A.; Yusof, T.N.T.; Gomes, C. Non-destructive techniques of detecting plant diseases: A review. Physiol. Mol. Plant Pathol. 2019, 108, 101426–101437. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Li, L.F.; Guo, F.F.; Zhang, K.Y.; Dong, J.Y.; Luo, Y.; Ma, Z.H. Southern corn rust caused by Puccinia polysora Underw.: A review. Phytopathol. Res. 2021, 3, 25. [Google Scholar] [CrossRef]
- Sun, Q.Y.; Liu, J.; Zhang, K.Y.; Huang, C.; Li, L.F.; Dong, J.Y.; Luo, Y.; Ma, Z.H. De novo transcriptome assembly, polymorphic SSR markers development and population genetics analyses for southern corn rust (Puccinia polysora). Sci. Rep. 2021, 11, 18029. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.H.; Luo, Y.; Chen, T.T.; Huang, C.; Ma, Z.H. Field distribution of wheat stripe rust latent infection using real-time PCR. Plant Dis. 2012, 96, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Bohnenkamp, D.; Kuska, M.T.; Mahlein, A.K.; Behmann, J. Hyperspectral signal decomposition and symptom detection of wheat rust disease at the leaf scale using pure fungal spore spectra as reference. Plant Pathol. 2019, 68, 1188–1195. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water-content using near-infrared and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Cheng, T.; Rivard, B.; Sanchez-Azofeifa, A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens. Environ. 2011, 115, 659–670. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2017, 125, 5–20. [Google Scholar] [CrossRef]
- Visible Light Definition and Wavelengths. Available online: https://www.thoughtco.com/definition-of-visible-light-605941 (accessed on 10 May 2022).
- Smith, K.L.; Steven, M.D.; Colls, J.J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 2004, 92, 207–217. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Oerke, E.C.; Herzog, K.; Toepfer, R. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. J. Exp. Bot. 2016, 67, 5529–5543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of relief and rrelieff. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Deng, H.T.; Odindi, J.; Abdel-Rahman, E.M.; Mutanga, O. Detecting the early stage of phaeosphaeria leaf spot infestations in maize crop using in-situ hyperspectral data and guided regularized random forest algorithm. J. Spectros. 2017, 2017, 6961387. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Wang, L.M.; Liu, J.; Shao, J.; Yang, F.G.; Gao, J.M. Remote sensing index selection of leaf blight disease in spring maize based on hyperspectral data. Trans. Chin. Soc. Agric. Eng. 2017, 33, 170–177, (In Chinese with English Abstract). [Google Scholar]
- Shi, Y.; Huang, W.J.; Gonzalez-Moreno, P.; Luke, B.; Dong, Y.Y.; Zheng, Q.; Ma, H.Q.; Liu, L.Y. Wavelet-based rust spectral feature set (WRSFs): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yang, G.J.; Pan, Y.C.; Yang, X.D.; Chen, L.P.; Zhao, C.J. A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sens. 2020, 12, 3188. [Google Scholar] [CrossRef]
- Meng, R.; Lv, Z.G.; Yan, J.B.; Chen, G.S.; Zhao, F.; Zeng, L.L.; Xu, B.Y. Development of spectral disease indices for southern corn rust detection and severity classification. Remote Sens. 2020, 12, 3233. [Google Scholar] [CrossRef]
- Skoneczny, H.; Kubiak, K.; Spiralski, M.; Kotlarz, J. Fire blight disease detection for apple trees: Hyperspectral analysis of healthy, infected and dry leaves. Remote Sens. 2020, 12, 2101. [Google Scholar] [CrossRef]
- Dhau, I.; Adam, E.; Mutanga, O.; Ayisi, K.; Abdel-Rahman, E.M.; Odindi, J.; Masocha, M. Testing the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize crop. Geocarto Int. 2018, 33, 1223–1236. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Comput. Electron. Agric. 2017, 135, 154–162. [Google Scholar] [CrossRef]
- Ashourloo, D.; Aghighi, H.; Matkan, A.A.; Mobasheri, M.R.; Rad, A.M. An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4344–4351. [Google Scholar] [CrossRef]
- Sarhadi, A.; Burn, D.H.; Johnson, F.; Mehrotra, R.; Sharma, A. Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques. J. Hydrol. 2016, 536, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Sklearn.Metrics.Precision_Recall_Fscore_Support. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html (accessed on 10 May 2022).
- Lama, G.F.C.; Sadeghifar, T.; Azad, M.T.; Sihag, P.; Kisi, O. On the indirect estimation of wind wave heights over the southern coasts of Caspian Sea: A comparative analysis. Water 2022, 14, 843. [Google Scholar] [CrossRef]
- Albarracín, J.F.H.; Oliveira, R.S.; Hirota, M.; DosSantos, J.A.; Torres, R.D.S. A soft computing approach for selecting and combining spectral bands. Remote Sens. 2020, 12, 2267. [Google Scholar] [CrossRef]
- Li, H.; Xiao, G.G.; Xia, T.; Tang, Y.Y.; Li, L.Q. Hyperspectral image classification using functional data analysis. IEEE Trans. Cybern. 2014, 44, 1544–1555. [Google Scholar]
- Sadeghifar, T.; Lama, G.F.C.; Sihag, P.; Bayram, A.; Kisi, O. Wave height predictions in complex sea flows through soft-computing models: Case study of Persian Gulf. Ocean. Eng. 2022, 245, 110467. [Google Scholar] [CrossRef]
- Yang, S.B.; Xia, T.L.; Zhang, Z.Q.; Zheng, C.W.; Li, X.F.; Li, H.Y.; Xu, J.J. Prediction of significant wave heights based on CS-BP model in the South China Sea. IEEE Access 2019, 7, 147490–147500. [Google Scholar] [CrossRef]
- Pham, Q.B.; Mohammadpour, R.; Linh, N.T.T.; Mohajane, M.; Pourjasem, A.; Sammen, S.S.; Anh, D.T.; Nam, V.T. Application of soft computing to predict water quality in wetland. Environ. Sci. Pollut. Res. 2021, 28, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Arabameri, A.; Blaschke, T.; Pradhan, B.; Pourghasemi, H.R.; Tiefenbacher, J.P.; Bui, D.T. Evaluation of recent advanced soft computing techniques for gully erosion susceptibility mapping: A Comparative Study. Sensors 2020, 20, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, H.Y.; Kornejady, A.; Soltani, A.; Termeh, S.V.R.; Liu, J.Z.; Zhu, A.X.; Hesar, A.Y.; Bin Ahmad, B.; Wang, Y. Landslide susceptibility assessment in the Anfu County, China: Comparing different statistical and probabilistic models considering the new topo-hydrological factor (HAND). Earth Sci. Inform. 2018, 11, 605–622. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 18. [Google Scholar] [CrossRef]
- Dal-Sasso, S.F.; Pizarro, A.; Samela, C.; Mita, L.; Manfreda, S. Exploring the optimal experimental setup for surface flow velocity measurements using PTV. Environ. Monit. Assess. 2018, 190, 460. [Google Scholar] [CrossRef]
- Tian, L.; Xue, B.W.; Wang, Z.Y.; Li, D.; Yao, X.; Cao, Q.; Zhu, Y.; Cao, W.X.; Cheng, T. Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection. Remote Sens. Environ. 2021, 257, 112350. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pu, R.L.; Wang, J.H.; Huang, W.J.; Yuan, L.; Luo, J.H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Appeltans, S.; Guerrero, A.; Nawar, S.; Pieters, J.; Mouazen, A.M. Practical recommendations for hyperspectral and thermal proximal disease sensing in potato and leek fields. Remote Sens. 2020, 12, 1939. [Google Scholar] [CrossRef]
- Garhwal, A.S.; Pullanagari, R.R.; Li, M.; Reis, M.M.; Archer, R. Hyperspectral imaging for identification of zebra chip disease in potatoes. Biosyst. Eng. 2020, 197, 306–317. [Google Scholar] [CrossRef]
- Chen, T.T.; Zhang, J.L.; Chen, Y.; Wan, S.B.; Zhang, L. Detection of peanut leaf spots disease using canopy hyperspectral reflectance. Comput. Electron. Agric. 2019, 156, 677–683. [Google Scholar] [CrossRef]
- Herrmann, I.; Vosberg, S.K.; Ravindran, P.; Singh, A.; Chang, H.X.; Chilvers, M.I.; Conley, S.P.; Townsend, P.A. Leaf and canopy level detection of fusarium virguliforme (sudden death syndrome) in soybean. Remote Sens. 2018, 10, 426. [Google Scholar] [CrossRef] [Green Version]
- Moshou, D.; Bravo, C.; West, J.; Wahlen, T.; McCartney, A.; Ramon, H. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004, 44, 173–188. [Google Scholar] [CrossRef]
- Yao, Z.F.; Lei, Y.; He, D.J. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging. Sensors 2019, 19, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.L.; Huang, L.S.; Huang, W.J.; Zhang, D.Y.; Yuan, L.; Zhang, J.C.; Liang, D. Hyperspectral measurements of severity of stripe rust on individual wheat leaves. Eur. J. Plant Pathol. 2014, 139, 401–411. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, Y.L.; Wang, S.H.; Wang, C.C.; Ma, Z.H. Canopy spectral characterization of wheat stripe rust in latent period. J. Spectrosc. 2015, 2015, 126090. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qin, F.; Ruan, L.; Wang, R.; Liu, Q.; Ma, Z.H.; Li, X.L.; Cheng, P.; Wang, H.G. Identification and severity determination of wheat stripe rust and wheat leaf rust based on hyperspectral data acquired using a black-paper-based measuring method. PLoS ONE 2016, 11, e0154648. [Google Scholar] [CrossRef]
- Dehkordi, R.H.; El Jarroudi, M.; Kouadio, L.; Meersmans, J.; Beyer, M. Monitoring wheat leaf rust and stripe rust in winter wheat using high-resolution UAV-based red-green-blue imagery. Remote Sens. 2020, 12, 3696. [Google Scholar] [CrossRef]
- Ruan, C.; Dong, Y.Y.; Huang, W.J.; Huang, L.S.; Ye, H.C.; Ma, H.Q.; Guo, A.T.; Ren, Y. Prediction of wheat stripe rust occurrence with time series sentinel-2 images. Agriculture 2021, 11, 1079. [Google Scholar] [CrossRef]
- Xu, J.; Miao, T.; Zhou, Y.C.; Xiao, Y.; Deng, H.B.; Song, P.; Song, K. Classification of maize leaf diseases based on hyperspectral imaging technology. J. Opt. Technol. 2020, 87, 212–217. [Google Scholar] [CrossRef]
- Luo, L.L.; Chang, Q.R.; Wang, Q.; Huang, Y. Identification and severity monitoring of maize dwarf mosaic virus infection based on hyperspectral measurements. Remote Sens. 2021, 13, 4560. [Google Scholar] [CrossRef]
- Analytical Spectral Devices, Inc. (ASD). Technical Guide, 3rd ed.; Analytical Spectral Devices, Inc.: Boulder, CO, USA, 1999; Available online: https://wiki.chem.gwu.edu/MillerLab/images/3/3e/FieldSpecTechGuide.pdf (accessed on 10 May 2022).
- Schafer, R.W. What is a savitzky-golay filter? IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Evangelides, C.; Nobajas, A. Red-edge normalised difference vegetation index (NDVI705) from sentinel-2 imagery to assess post-fire regeneration. Remote Sens. Appl. Soc. Environ. 2020, 17, 100283. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Uelas, J.P.; Filella, I.; Lloret, P.; Oz, F.M.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar]
- Penuelas, J.; Baret, F.; Filella, I. Semi empirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina). Remote Sens. 2014, 6, 4723–4740. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane ‘orange rust’ disease using EO-1 hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Zarco-Tejada, P.J. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sens. Environ. 2012, 127, 298–315. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Furuya, D.E.G.; Ma, L.F.; Pinheiro, M.M.F.; Gomes, F.D.G.; Goncalvez, W.N.; Marcato, J.; Rodrigues, D.D.; Blassioli-Moraes, M.C.; Michereff, M.F.F.; Borges, M.; et al. Prediction of insect-herbivory-damage and insect-type attack in maize plants using hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102608. [Google Scholar]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Devadas, R.; Lamb, D.W.; Backhouse, D.; Simpfendorfer, S. Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precis. Agric. 2015, 16, 477–491. [Google Scholar] [CrossRef] [Green Version]
- Carter, G.A.; Miller, R.L. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sens. Environ. 1994, 50, 295–302. [Google Scholar] [CrossRef]
- Huang, L.Q.; Zhang, K.Y.; Dong, J.Y.; Sun, Q.Y.; Li, L.F.; Ma, Z.H. A fast method for distinguishing southern rust pathogen Puccinia polysora from common rust pathogen Puccinia sorghi. J. Plant Prot. 2020, 47, 1385–1386. (In Chinese) [Google Scholar]
Group | Disease Severity | Measuring Height | Leaf Curvature | Sample Numbers |
---|---|---|---|---|
1 | Healthy | 5 cm | Flat | 30 |
2 | Healthy | 20 cm | Flat | 13 |
3 | Healthy | 5 cm | Convex | 18 |
4 | Healthy | 5 cm | Concave | 28 |
5 | Moderate | 5 cm | Flat | 15 |
6 | Moderate | 5 cm | Convex | 21 |
7 | Moderate | 5 cm | Concave | 13 |
8 | Severe | 5 cm | Flat | 21 |
9 | Severe | 20 cm | Flat | 12 |
10 | Severe | 5 cm | Convex | 20 |
11 | Severe | 5 cm | Concave | 15 |
Dataset | Sample Number | Contained Samples |
---|---|---|
A | 66 | All samples in groups 1, 5 and 8; |
B | 79 | All samples in groups 1, 2, 8 and 9; |
C | 187 | All samples in groups 1, 3–8, 10 and 11 |
D | 66 | All samples in groups 2 and 5–9; 17 samples in group 1; 9 samples in group 8 |
E | 66 | 10 samples each in groups 1, 3 and 4; 5 samples each in groups 5, 6 and 7; 7 samples each in groups 8, 10 and 11 |
F | 66 | 9 samples in group 2; 7 samples each in groups 1, 3 and 4; 6 samples in group 9; 5 samples each in groups 5, 6, 7, 8, 10 and 11 |
Index | Formula | Covered Spectral Region | References |
---|---|---|---|
HI (Health Index) | Yellow [11], NIR [13], SWIR [13] | [22] | |
SI (Severity Index) | Yellow [11], Red [13], SWIR [13] | [22] | |
RENDVI (Red-Edge Normalized Difference Vegetation Index) | Red edge [12] | [57] | |
PRI (Photochemical Reflectance Index) | Green [11], yellow [11] | [58] | |
NPQI (Normalized Phaeophytinization Index) | Violet [11] | [59] | |
SIPI (Structure-Independent Pigment Index) | Violet [11], red [13], NIR [13] | [60] | |
LRDSI (Leaf Rust Disease Severity Index) | Blue [11], orange [11] | [61] | |
MTCI (MERIS Terrestrial Chlorophyll Index) | Red [13], red edge [12], NIR [13] | [62] | |
DWSI (Disease Water Stress Index) | Green [11], SWIR [13] | [63] | |
SRI (Simple Ratio Index) | Green [11] | [64] |
Dataset | Parameter | SI | RENDVI | PRI | LRDSI | MTCI | SRI |
---|---|---|---|---|---|---|---|
A | OA (%) | 61.80 | 78.70 | 80.60 | 82.00 | 80.40 | 71.00 |
MAP (%) | 58.86 | 75.35 | 76.77 | 78.01 | 78.34 | 67.72 | |
MAR (%) | 57.93 | 76.70 | 76.76 | 77.16 | 77.91 | 67.70 | |
D | OA (%) | 55.8 | 67.10 | 81.80 | 79.40 | 71.20 | 74.90 |
MAP (%) | 46.54 | 59.01 | 77.78 | 74.91 | 69.75 | 70.21 | |
MAR (%) | 48.12 | 61.65 | 77.96 | 75.37 | 69.14 | 71.41 | |
E | OA (%) | 54.9 | 79.40 | 80.10 | 74.40 | 75.30 | 66.80 |
MAP (%) | 42.98 | 76.54 | 77.30 | 73.26 | 71.12 | 68.46 | |
MAR (%) | 47.72 | 76.05 | 77.65 | 72.85 | 71.35 | 64.80 | |
F | OA (%) | 48.00 | 71.40 | 81.30 | 70.00 | 65.60 | 59.30 |
MAP (%) | 37.41 | 70.41 | 79.70 | 67.37 | 62.99 | 51.03 | |
MAR (%) | 44.02 | 70.4 | 76.78 | 66.68 | 63.90 | 54.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Ding, M.; Sun, Q.; Dong, J.; Wang, H.; Ma, Z. Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination. Remote Sens. 2022, 14, 2551. https://doi.org/10.3390/rs14112551
Gao J, Ding M, Sun Q, Dong J, Wang H, Ma Z. Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination. Remote Sensing. 2022; 14(11):2551. https://doi.org/10.3390/rs14112551
Chicago/Turabian StyleGao, Jianmeng, Mingliang Ding, Qiuyu Sun, Jiayu Dong, Huanyi Wang, and Zhanhong Ma. 2022. "Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination" Remote Sensing 14, no. 11: 2551. https://doi.org/10.3390/rs14112551
APA StyleGao, J., Ding, M., Sun, Q., Dong, J., Wang, H., & Ma, Z. (2022). Classification of Southern Corn Rust Severity Based on Leaf-Level Hyperspectral Data Collected under Solar Illumination. Remote Sensing, 14(11), 2551. https://doi.org/10.3390/rs14112551