Elastic and Inelastic Ground Deformation in Shanghai Lingang Area Revealed by Sentinel-1, Leveling, and Groundwater Level Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. SAR Data
3.2. Leveling Data
3.3. Water Level Well Data
3.4. PSInSAR Technique
3.5. Reduction of InSAR Measurement
3.6. Aquifer Parameters Estimation
4. Results and Discussion
4.1. PSInSAR Derived Deformation
4.2. Analysis of Subsidence Characteristics and Leveling Verification
4.3. The Relationship between Groundwater Level Changes and Ground Subsidence
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoeksema, R. Three stages in the history of land reclamation in the Netherlands. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2007, 56, S113–S126. [Google Scholar] [CrossRef]
- Cuenca, M.C.; Hanssen, R.; Hooper, A.; Arikan, M. Surface deformation of the whole Netherlands after PSI analysis. In Proceedings of the Fringe 2011 Workshop, Frascati, Italy, 19–23 September 2011. [Google Scholar]
- Zhao, Q.; Lin, H.; Gao, W.; Zebker, H.; Chen, A.; Yeung, K. InSAR detection of residual settlement of an ocean reclamation engineering project: A case study of Hong Kong International Airport. J. Oceanogr. 2011, 67, 415–426. [Google Scholar] [CrossRef]
- Plant, G.; Covil, C.; Hughes, R. Site Preparation for the New Hong Kong International Airport; Thomas Telford: Telford, UK, 1998. [Google Scholar]
- Liu, G.; Ding, X. Detecting of Surface Deformation in Coastlands by DInSAR: Accuracy and Applicability Analysis. Bull. Surv. Mapp. 2006, 9, 9–13. [Google Scholar]
- Wan, X.; Hu, B.; Ma, Q. Monitoring ground subsidence in Macau with Persistent Scatters Interferometry. Eng. Surv. Mapp. 2012, 21, 39–43. [Google Scholar]
- Luo, Q.; Perissin, D.; Li, Q.; Lin, H.; Duering, R. Tianjin INSAR time series analysis with L-and X-band. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1477–1480. [Google Scholar]
- Lv, X.; Niu, W.; Luo, L.; Zhang, Y.; Yi, N. Research on monitoring and control of land subsidence in a sea reclamation region of Tianjin. Shanghai Land Resour. 2016, 37, 55–59. [Google Scholar]
- Zhang, J.; Hu, K.; Yue, W.; Liu, B.; Wang, J.; Gao, Q. Land Subsidence in Shanghai City and Its Response to Groundwater exploitation and reinjection. Resour. Environ. Yangtze Basin 2016, 25, 567–572. [Google Scholar]
- Shen, S. Geological environmental character of Lin-Gang new city and its influences to the construction. Shanghai Geol. 2008, 105, 24–28. [Google Scholar]
- Li, J.; Dai, Z.; Ying, M.; Wu, R.; Fu, G.; Xu, H. Analysis on the development and evolution of tidal flats and reclamation of land resource along shore of Shanghai city. J. Nat. Resour. 2007, 22, 361–371. [Google Scholar]
- Zhang, L.; Ding, X.; Lu, Z.; Jung, H.; Hu, J.; Feng, G. A novel multitemporal InSAR model for joint estimation of deformation rates and orbital errors. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3529–3540. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.; Feng, G.; Lee, C. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.S.; Xu, Y.; Zhang, B.; Jiang, M.; Xiong, S.; Zhang, Q.; Li, W.; Li, Q. A new likelihood function for consistent phase series estimation in distributed scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5227314. [Google Scholar] [CrossRef]
- Galloway, D.; Hudnut, K.; Ingebritsen, S.; Phillips, S.; Peltzer, G.; Rogez, F.; Rosen, P. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res. 1998, 34, 2573–2585. [Google Scholar] [CrossRef]
- Hoffmann, J.; Galloway, D.; Zebker, H. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res. 2003, 39, 1031. [Google Scholar] [CrossRef]
- Erban, L.; Gorelick, S.; Zebker, H.; Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl. Acad. Sci. USA 2013, 110, 13751–13756. [Google Scholar] [CrossRef] [Green Version]
- Matano, F.; Sacchi, M.; Vigliotti, M.; Ruberti, D. Subsidence trends of volturno river coastal plain (northern campania, southern italy) inferred by sar interferometry data. Geosciences 2018, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wright, T.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Jia, H.; Nie, Y.; Li, T.; Zhang, R.; Yu, B.; Li, Z. Detecting subsidence in coastal areas by ultrashort-baseline TCPInSAR on the time series of high-resolution TerraSAR-X images. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1911–1923. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, G.; Wang, Q.; Yang, T.; Liu, M.; Gao, W.; Falabella, F.; Mastro, P.; Pepe, A. Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS J. Photogramm. Remote Sens. 2019, 154, 10–27. [Google Scholar] [CrossRef]
- Zhao, Q.; Pepe, A.; Gao, W.; Lu, Z.; Bonano, M.; He, M.L.; Wang, J.; Tang, X. A DInSAR investigation of the ground settlement time evolution of ocean-reclaimed lands in Shanghai. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1763–1781. [Google Scholar] [CrossRef]
- Zhao, Q.; Pepe, A.; Gao, W.; Li, X.; Lu, Z.; Bonano, M.; Manunta, M.; Lanari, R. Derivation of Ground Settlement Spatiotemporal Characteristics of Reclaimed Area in Nanhui New City, Shanghai, China, from Time-Series in InSAR Interpretation. Dragon 3mid Term Results 2014, 724, 39. [Google Scholar]
- Luo, Y.; Yan, X.; Yang, T.; Ye, S.; Wu, J. Space-time characteristics of exploitation and recharge of groundwater and land subsidence if Shanghai land area. J. Nanjing Univ. Nat. Sci. Ed. 2019, 3, 449–457. [Google Scholar]
- Yu, L.; Yang, T.; Zhao, Q.; Liu, M.; Pepe, A. The 2015–2016 ground displacements of the Shanghai coastal area inferred from a combined COSMO-SkyMed/Sentinel-1 DInSAR analysis. Remote Sens. 2017, 9, 1194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yue, W.; Liu, B. Land Subsidence in Shanghai and Its Response to Groundwater Irrigation. Yangtze River Basin Resour. Environ. 2016, 25, 4. [Google Scholar]
- Liao, M.; Pei, Y.; Wang, H.; Fang, Z.; Wei, L. Subsidence monitoring in Shanghai using the PSInSAR technique. Shanghai Land Resour. 2012, 33, 5–10. [Google Scholar]
- Hu, S.; Wu, J.; Ban, B.; Zhang, L. PALSAR interferometry for urban subsidence monitoring: An experiment in Shanghai area. In Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 26–30 October 2009; pp. 140–143. [Google Scholar]
- Yang, M.; Jiang, Y.; Liao, M.; Wang, H. The analysis of the subsidence patterns in Lingang New City (Shanghai) using high-resolution SAR images. Shanghai Land Resour. 2013, 34, 12–16. [Google Scholar]
- Shi, X.; Wu, J.; Ye, S.; Zhang, Y.; Xue, Y.; Wei, Z.; Li, Q.; Yu, J. Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China. Eng. Geol. 2008, 100, 27–42. [Google Scholar] [CrossRef]
- Liu, G.; Luo, X.; Chen, Q.; Huang, D.; Ding, X. Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors 2008, 8, 4725–4741. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yang, T.; Zhang, L.; Lin, J.; Qin, X.; Liao, M. Spatio-Temporal Characterization of a Reclamation Settlement in the Shanghai Coastal Area with Time Series Analyses of X-, C-, and L-Band SAR Datasets. Remote Sens. 2018, 10, 3291. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Zhao, Q.; Tang, M.; Calò, F.; Zamparelli, V.; Falabella, F.; Liu, M.; Pepe, A. On the Characterization and Forecasting of Ground Displacements of Ocean-Reclaimed Lands. Remote Sens. 2020, 12, 297. [Google Scholar] [CrossRef]
- Qiu, J.; Li, X. The Quaternary Strata and Sedimentary Environment of Shanghai City; Shanghai Science and Technology Press: Shanghai, China, 2007. [Google Scholar]
- Attema, E.; Davidson, M.; Snoeij, P.; Rommen, B.; Floury, N. Sentinel-1 mission overview. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. I-36–I-39. [Google Scholar]
- Panetti, A.; Torres, R.; Lokas, S.; Bruno, C.; Croci, R.; L’Abbate, M.; Marcozzi, M.; Pietropaolo, A.; Venditti, P. GMES Sentinel-1: Mission and satellite system overview. In Proceedings of the EUSAR 2012; 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23–26 April 2012 ; pp. 162–165. [Google Scholar]
- Rostan, F.; Riegger, S.; Pitz, W.; Torre, A.; Torres, R. The C-SAR instrument for the GMES sentinel-1 mission. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 215–218. [Google Scholar]
- Yague, M.; De, Z.; Prats-Iraola, P. Coregistration of interferometric stacks of Sentinel-1 TOPS data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1002–1006. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Bert, M. Radar Interferometry: Persistent Scatterers Technique; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Kampes, B.; Hanssen, R. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2446–2453. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R. Radar interferometry: Data interpretation and error analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Czikhardt, R.; Papco, J.; Bakon, M.; Liscak, P.; Ondrejka, P.; Zlocha, M. Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences 2017, 7, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Locatelli, R.; Novali, F. Ground deformation monitoring exploiting SAR permanent scatterers. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1219–1221. [Google Scholar]
- Perissin, D.; Wang, T. Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans. Geosci. Remote Sens. 2011, 50, 271–280. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H. Phase unwrapping in three dimensions with application to InSAR time series. JOSA A 2007, 24, 2737–2747. [Google Scholar] [CrossRef] [Green Version]
- Terzaghi, K. Erdbaumechanik auf bodenphysikalischer Grundlage; F. Deuticke: Leipzig, Vienna, 1925. [Google Scholar]
- Hoffmann, J. The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems. Ph.D. Thesis, Department of Geophysics, Stanford University, Stanford, CA, USA, 2003; pp. 1–211. [Google Scholar]
Hydrogeological Section | Full Name | Short Name |
---|---|---|
Aquifers | Submerged aquifer | A0 |
First confined aquifer | A1 | |
Second confined aquifer | A2 | |
Third confined aquifer | A3 | |
Fourth confined aquifer | A4 | |
Fifth confined aquifer | A5 | |
Weakly permeable layers | Topsoil layer | B0 |
First weakly permeable layer | B1 | |
Second weakly permeable layer | B2 | |
Third weakly permeable layer | B3 | |
Fourth weakly permeable layer | B4 | |
Fifth weakly permeable layer | B5 | |
Sixth weakly permeable layer | B6 |
No | Acquisition Time | No | Acquisition Time | No | Acquisition Time |
---|---|---|---|---|---|
1 | 20160515 | 18 | 20170311 | 35 | 20171013 |
2 | 20160608 | 19 | 20170404 | 36 | 20171106 |
3 | 20160726 | 20 | 20170416 | 37 | 20171118 |
4 | 20160819 | 21 | 20170428 | 38 | 20171130 |
5 | 20160912 | 22 | 20170510 | 39 | 20171212 |
6 | 20161006 | 23 | 20170522 | 40 | 20171224 |
7 | 20161018 | 24 | 20170603 | 41 | 20180117 |
8 | 20161030 | 25 | 20170615 | 42 | 20180129 |
9 | 20161111 | 26 | 20170627 | 43 | 20180210 |
10 | 20161123 | 27 | 20170709 | 44 | 20180222 |
11 | 20161205 | 28 | 20170721 | 45 | 20180306 |
12 | 20161217 | 29 | 20170802 | 46 | 20180318 |
13 | 20161229 | 30 | 20170814 | 47 | 20180330 |
14 | 20170122 | 31 | 20170826 | 48 | 20180411 |
15 | 20170203 | 32 | 20170907 | 49 | 20180423 |
16 | 20170215 | 33 | 20170919 | 50 | 20180505 |
17 | 20170227 | 34 | 20171001 |
ID | Time Span (year/month) | Well (m) | InSAR (mm) | |
---|---|---|---|---|
W65-4 | 201605–201611 | −0.37 | −0.83 | 0.0022 |
201611–201707 | 0.15 | 1.3 | 0.0087 | |
201706–201805 | 0.45 | 0.56 | 0.0013 | |
W66-4 | 201605–201611 | −0.19 | −0.83 | 0.0044 |
201611–201707 | 0.24 | 1.3 | 0.0054 | |
201706–201804 | 1.11 | 2.71 | 0.0024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liao, M.; Wu, J.; Li, X.; Xiong, F.; Liu, S.; Feng, Y.; Wang, X. Elastic and Inelastic Ground Deformation in Shanghai Lingang Area Revealed by Sentinel-1, Leveling, and Groundwater Level Data. Remote Sens. 2022, 14, 2693. https://doi.org/10.3390/rs14112693
Chen Y, Liao M, Wu J, Li X, Xiong F, Liu S, Feng Y, Wang X. Elastic and Inelastic Ground Deformation in Shanghai Lingang Area Revealed by Sentinel-1, Leveling, and Groundwater Level Data. Remote Sensing. 2022; 14(11):2693. https://doi.org/10.3390/rs14112693
Chicago/Turabian StyleChen, Yanling, Minyan Liao, Jicang Wu, Xiaobo Li, Fuwen Xiong, Shijie Liu, Yongjiu Feng, and Xiaoya Wang. 2022. "Elastic and Inelastic Ground Deformation in Shanghai Lingang Area Revealed by Sentinel-1, Leveling, and Groundwater Level Data" Remote Sensing 14, no. 11: 2693. https://doi.org/10.3390/rs14112693
APA StyleChen, Y., Liao, M., Wu, J., Li, X., Xiong, F., Liu, S., Feng, Y., & Wang, X. (2022). Elastic and Inelastic Ground Deformation in Shanghai Lingang Area Revealed by Sentinel-1, Leveling, and Groundwater Level Data. Remote Sensing, 14(11), 2693. https://doi.org/10.3390/rs14112693