Elevation Resolution Enhancement Method Using Non-Ideal Linear Motion Error of Airborne Array TomoSAR
Abstract
:1. Introduction
2. Airborne Array TomoSAR Imaging Theory
2.1. Airborne Array TomoSAR Signal Model
2.2. Effective Baseline Length
3. Resolution Enhancement Using the Motion Error Method
- 1.
- Airborne array TomoSAR transmits LFM signals to the observation scene and received echo.
- 2.
- Echo data images of each channel are obtained in 2D. Based on the position and orientation system (POS) data, the ranges of non-ideal and ideal trajectories are determined.
- 3.
- Each channel complex image is aligned and the amplitude phase is corrected.
- 4.
- According to the trajectory information and scene grid position, the observation equation is generated.
- 5.
- The conversion result data of ten continuous azimuth pixels along the same distance, which can describe the change in the trajectory in a synthetic aperture, are intercepted in sequence and substituted into the observation equation. The observation equation is solved under the constraint of target sparsity, obtaining the reconstruction results.
- 6.
- The reconstruction results are fused to obtain the 3D reconstruction results of the whole scene.
Algorithm 1: 3D Reconstruction. |
Input: Multi-channel image registration data , POS data Initialization: Multi-channel image registration data size for all do Step 1: Ten points in ten azimuth directions are selected one after the other. The azimuth coordinate a and elevation coordinate s are recorded. Step 2: The grid points are divided into . The observation matrix is calculated as , the actual curve trajectory observation model of airborne array TomoSAR is established. for all do Step 3: Starting from one distance direction in sequence, azimuth FFT is performed. The multi-channel image data are substituted into the model to obtain the observation equation. end Step 4: The observation equation is sparsely solved according to the sparse distribution characteristics of the target to obtain the target image. Alternative adaptive estimation in the azimuth frequency domain and elevation time domain. end Output: The 3D reconstruction data . |
4. Datasets
5. Experimental Results and Analysis
5.1. Simulation Experiments
5.2. Real-Data Experiments
5.2.1. Layover Points
5.2.2. Layover Building
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TomoSAR | tomographic synthetic aperture radar |
3D | three-dimensional |
MOCO | motion compensation |
2D | two-dimensional |
TS-MOCO | two-step motion compensation |
ARTINO | airborne radar for three-dimensional imaging and nadir observation |
AIRCAS | Aerospace Information Research Institute, Chinese Academy of Sciences |
CS | compressed sensing |
LFM | linear frequency modulation |
POS | position and orientation system |
FFT | fast Fourier transform |
SNR | signal-to-noise ratio |
BP | basis pursuit |
References
- Shi, J.; Zhang, X.; Yang, J.; Wang, Y. Surface-Tracing-Based LASAR 3-D Imaging Method via Multiresolution Approximation. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3719–3730. [Google Scholar]
- Zhu, X.X.; Montazeri, S.; Gisinger, C.; Hanssen, R.F.; Bamler, R. Geodetic SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 18–35. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, A.; Chan, T.K.; Kuga, Y. An imaging technique using confocal circular synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1524–1530. [Google Scholar] [CrossRef]
- Mahafza, B.R. Two-dimensional SAR imaging using linear arrays with transverse motion. J. Frankl. Inst. 1992, 330, 95–102. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Hong, W.; Du, L.; Wu, Y. Imaging Geometry Analysis of 3D SAR using Linear Array Antennas. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 3, pp. III-1216–III-1219. [Google Scholar]
- Wei, S.J.; Zhang, X.L.; Shi, J. Compressed sensing Linear array SAR 3-D imaging via sparse locations prediction. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1887–1890. [Google Scholar]
- Wei, S. Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging. Remote Sens. 2021, 13, 1751. [Google Scholar] [CrossRef]
- Zhang, F.; Liang, X.; Wu, Y.; Lv, X. 3D surface reconstruction of layover areas in continuous terrain for multi-baseline SAR interferometry using a curve model. Int. J. Remote Sens. 2015, 36, 2093–2112. [Google Scholar] [CrossRef]
- Wei, X.; Chong, J.; Zhao, Y.; Li, Y.; Yao, X. Airborne SAR Imaging Algorithm for Ocean Waves Based on Optimum Focus Setting. Remote Sens. 2019, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Tsaig, Y.; Donoho, D.L. Extensions of compressed sensing. Signal Process. 2006, 86, 549–571. [Google Scholar] [CrossRef]
- Baraniuk, R.; Steeghs, P. Compressive Radar Imaging. In Proceedings of the 2007 IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007; pp. 128–133. [Google Scholar]
- Budillon, A.; Evangelista, A.; Schirinzi, G. SAR tomography from sparse samples. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, pp. IV-865–IV-868. [Google Scholar]
- Zhu, X.X.; Bamler, R. Tomographic SAR Inversion by L1 Norm Regularization – The Compressive Sensing Approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3839–3846. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Zhang, B.; Zhang, Z.; Hong, W.; Wu, Y. Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data. Sci. China Inf. Sci. 2012, 55, 15. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Pi, Y.; Cao, Z. Bayesian compressive sensing in synthetic aperture radar imaging. IET Radar Sonar Navig. 2012, 6, 2–8. [Google Scholar] [CrossRef]
- Kanatsoulis, C.I.; Fu, X.; Sidiropoulos, N.D.; Akakaya, M. Tensor Completion from Regular Sub-Nyquist Samples. IEEE Trans. Signal Process. 2019, 68, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Liu, Y.; Xing, M. Multi-Channel Synthetic Aperture Radar Imaging of Ground Moving Targets Using Compressive Sensing. IEEE Access 2018, 6, 66134–66142. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, R.; Li, Y.; Xu, R.; Zhu, S.; Xing, M. Microwave Correlation Forward-Looking Super-Resolution Imaging Based on Compressed Sensing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8326–8337. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Makur, A. Signal Recovery from Random Measurements via Extended Orthogonal Matching Pursuit. IEEE Trans. Signal Process. 2015, 63, 2572–2581. [Google Scholar] [CrossRef]
- Chen, S.S.; Saunders, D. Atomic Decomposition by Basis Pursuit. Siam Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Hang, L.I.; Liang, X.; Zhang, F.; Ding, C.; Yirong, W.U. A novel 3-D reconstruction approach based on group sparsity of array InSAR. Sci. Sin. Inf. 2018, 48, 1051–1064. [Google Scholar]
- Li, Y.L.; Liang, X.D.; Ding, C.B.; Zhou, L.J.; Wen, H. A motion compensation approach integrated in the omega-K algorithm for airborne SAR. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Manchester, UK, 16–17 July 2012. [Google Scholar]
- Liang, X. An Elevation Ambiguity Resolution Method Based on Segmentation and Reorganization of TomoSAR Point Cloud in 3D Mountain Reconstruction. Remote Sens. 2021, 13, 5118. [Google Scholar] [CrossRef]
- Meng, D.; Xue, L.; Hu, D.; Ding, C.; Liu, J. Topography- and aperture-dependent motion compensation for airborne SAR: A back projection approach. In Proceedings of the Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Yi, B.; Gu, D.; Shao, K.; Ju, B.; Zhang, H.; Qin, X.; Duan, X.; Huang, Z. Precise Relative Orbit Determination for Chinese TH-2 Satellite Formation Using Onboard GPS and BDS2 Observations. Remote Sens. 2021, 13, 4487. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, B.; Gong, H.; Lei, K.; Shi, M.; Zhou, C. Three-Dimensional Surface Displacement of the Eastern Beijing Plain, China, Using Ascending and Descending Sentinel-1A/B Images and Leveling Data. Remote Sens. 2021, 13, 2809. [Google Scholar] [CrossRef]
- Mourad, M.; Tsuji, T.; Ikeda, T.; Ishitsuka, K.; Senna, S.; Ide, K. Mapping Aquifer Storage Properties Using S-Wave Velocity and InSAR-Derived Surface Displacement in the Kumamoto Area, Southwest Japan. Remote Sens. 2021, 13, 4391. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J.; Liu, J.; Sun, Q.; Li, Z.; Zhu, J.; Wu, L. Mapping Complete Three-Dimensional Ice Velocities by Integrating Multi-Baseline and Multi-Aperture InSAR Measurements: A Case Study of the Grove Mountains Area, East Antarctic. Remote Sens. 2021, 13, 643. [Google Scholar] [CrossRef]
- de Castro Filho, H.C.; de Carvalho Júnior, O.A.; de Carvalho, O.L.F.; de Bem, P.P.; dos Santos de Moura, R.; de Albuquerque, A.O.; Silva, C.R.; Ferreira, P.H.G.; Guimarães, R.F.; Gomes, R.A.T. Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series. Remote Sens. 2020, 12, 2655. [Google Scholar] [CrossRef]
- Hoskera, A.K.; Nico, G.; Irshad Ahmed, M.; Whitbread, A. Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data. Remote Sens. 2020, 12, 1664. [Google Scholar] [CrossRef]
- Xu, L.; Chen, Q.; Zhao, J.J.; Liu, X.W.; Xu, Q.; Yang, Y.H. An Integrated Approach for Mapping Three-Dimensional CoSeismic Displacement Fields from Sentinel-1 TOPS Data Based on DInSAR, POT, MAI and BOI Techniques: Application to the 2021 Mw 7.4 Maduo Earthquake. Remote Sens. 2021, 13, 4847. [Google Scholar] [CrossRef]
- Knaell, K.; Cardillo, G. Radar tomography for the generation of three-dimensional images. Radar Sonar Navig. IEE Proc. 1995, 142, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G.; Wendler, M.; Mittermayer, J.; Buckreuss, S.; Witte, F. Sector Imaging Radar for Enhanced Vision. In Proceedings of the German Radar Symposium, Bonn, Germany, 3–5 September 2002. [Google Scholar]
- Giret, R.; Jeuland, H.; Enert, P. A study of a 3D-SAR concept for a millimeter wave imaging radar onboard an UAV. In Proceedings of the European Radar Conference, Amsterdam, The Netherlands, 11–15 October 2004. [Google Scholar]
- Klare, J.; Weiss, M.; Peters, O.; Brenner, A.R.; Ender, J. ARTINO: A New High Resolution 3D Imaging Radar System on an Autonomous Airborne Platform. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Lei, D.; Wang, Y.P.; Wen, H.; Wu, Y.R. Analytic modeling and three-dimensional imaging of downward-looking SAR using bistatic uniform linear array antennas. In Proceedings of the Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007. [Google Scholar]
- Yang, C.; Lv, S.; Hou, Z.; Zhang, Q.; Li, T.; Zhao, C. Monitoring of Land Subsidence and Ground Fissure Activity within the Su-Xi-Chang Area Based on Time-Series InSAR. Remote Sens. 2022, 14, 903. [Google Scholar] [CrossRef]
- Wu, W.J.; Zhang, X.L.; Wei, S.J. Spaceborne-airborne bistatic SAR 3-D imaging using linear array antenna. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015. [Google Scholar]
- Zhou, H.F.; Li, Y.; Su, Y. Three-dimensional Imaging with Multi-aspect SAR Data. Dianzi Yu Xinxi Xuebao/J. Electron. Inf. Technol. 2014, 35, 2467–2474. [Google Scholar] [CrossRef]
- Qi, W.; Xing, M.; Lu, G.; Zheng, B. High-Resolution Three-Dimensional Radar Imaging for Rapidly Spinning Targets. IEEE Trans. Geosci. Remote Sens. 2008, 46, 22–30. [Google Scholar]
Parameter | Symbol | Value |
---|---|---|
Center Frequency | 10 GHz | |
Bandwidth | 500 MHz | |
Maximum baseline length | B | 3.6 m |
Baseline interval | b | 0.2 m |
Flight height | H | 4.7 km |
Flight velocity | v | 80 m/s |
Horizontal inclination of baseline | α | 0° |
Group | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
ratio | 1.00 | 1.10 | 1.20 | 1.23 | 1.25 | 1.30 | 1.40 | 1.50 |
Group | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
ratio | 1.55 | 1.60 | 1.70 | 1.80 | 1.90 | 2.00 | 3.00 |
Group | BP(s) | Proposed Method(s) |
---|---|---|
1 | 0.609 | 5.463 |
2 | 0.615 | 5.688 |
3 | 0.669 | 5.775 |
4 | 0.696 | 6.111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, F.; Zhang, Z.; Chen, L.; Wang, D.; Yang, Y.; Li, Z. Elevation Resolution Enhancement Method Using Non-Ideal Linear Motion Error of Airborne Array TomoSAR. Remote Sens. 2022, 14, 2891. https://doi.org/10.3390/rs14122891
Yang L, Zhang F, Zhang Z, Chen L, Wang D, Yang Y, Li Z. Elevation Resolution Enhancement Method Using Non-Ideal Linear Motion Error of Airborne Array TomoSAR. Remote Sensing. 2022; 14(12):2891. https://doi.org/10.3390/rs14122891
Chicago/Turabian StyleYang, Ling, Fubo Zhang, Zhuo Zhang, Longyong Chen, Dawei Wang, Yaqian Yang, and Zhenhua Li. 2022. "Elevation Resolution Enhancement Method Using Non-Ideal Linear Motion Error of Airborne Array TomoSAR" Remote Sensing 14, no. 12: 2891. https://doi.org/10.3390/rs14122891
APA StyleYang, L., Zhang, F., Zhang, Z., Chen, L., Wang, D., Yang, Y., & Li, Z. (2022). Elevation Resolution Enhancement Method Using Non-Ideal Linear Motion Error of Airborne Array TomoSAR. Remote Sensing, 14(12), 2891. https://doi.org/10.3390/rs14122891