Role of the Nyainrong Microcontinent in Seismogenic Mechanism and Stress Partitioning: Insights from the 2021 Nagqu Mw 5.7 Earthquake
Abstract
:1. Introduction
2. InSAR Observation and Fault Slip Inversion
2.1. InSAR Observations
2.2. Two-Dimensional Displacement
2.3. Seismogenic Fault Geometry and Distributed Slip
3. Stress Inversion from Local Focal Mechanisms
4. Discussion
4.1. Origins of the 2021 Nagqu Earthquake
4.2. Implication of the Nyainrong Microcontinent on Strain Partitioning and Stress Heterogeneous
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guynn, J.H.; Kapp, P.; Pullen, A.; Heizler, M.; Gehrels, G.; Ding, L. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 2006, 34. [Google Scholar] [CrossRef]
- Xie, C.; Li, C.; Su, L.; Wu, Y.; Xie, Y. Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent: Constraints from geochronology and geochemistry. Sci. China Earth Sci. 2013, 56, 2066–2079. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, R.; Huang, Q.; Liu, D.; Gong, X.; Chen, S.; Wu, K.; Yi, G.; Sun, Y.; Ding, L. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U–Pb geochronology of mafic granulites. Gondwana Res. 2014, 26, 975–985. [Google Scholar] [CrossRef]
- Chen, S.-S.; Shi, R.-D.; Fan, W.-M.; Gong, X.-H.; Wu, K. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean. J. Geophys. Res. Solid Earth 2017, 122, 4172–4190. [Google Scholar] [CrossRef]
- Pusok, A.E.; Stegman, D.R. The convergence history of India-Eurasia records multiple subduction dynamics processes. Sci. Adv. 2020, 6, eaaz8681. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Global Centroid Moment Tensor. Available online: https://www.globalcmt.org/ (accessed on 13 July 2022).
- Zhao, B.; Huang, Y.; Zhang, C.; Wang, W.; Tan, K.; Du, R. Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data. Geod. Geodyn. 2015, 6, 7–15. [Google Scholar] [CrossRef] [Green Version]
- National Tibetan Plateau Data Center. Available online: https://data.tpdc.ac.cn/zh-hans/data/7fee8675-d4ab-4f97-8bbf-269e20b7ac16/?q= (accessed on 13 July 2022).
- 1:1.5 Million Geological Map of Tibetan Plateau and Its Surrounding Areas; National Tibetan Plateau Data Center, Geological Publishing House GPH.: Beijing, China, 2019.
- Li, Y.; Li, Y.; Hu, X.; Liu, H. Fault Geometry and Mechanism of the Mw 5.7 Nakchu Earthquake in Tibet Inferred from InSAR Observations and Stress Measurements. Remote Sens. 2021, 13, 5142. [Google Scholar] [CrossRef]
- Li, Y.; Shao, Z.; Hu, X.; FuQiang, S.; Liu, H.; Chen, L. Stress and strain characteristics in the seismic region of the M6. 1 Nakchu earthquake on March 19, 2021 and their geodynamic implications. Chin. J. Geophys. 2022, 65, 673–685. [Google Scholar] [CrossRef]
- Arsen’yev, S.A.; Eppelbaum, L.V.; Meirova, T. Earthquake Processes: A View from Synergetics and the Theory of Catastrophes. Pure Appl. Geophys. 2019, 176, 3377–3390. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Oxford City, UK, 2019. [Google Scholar]
- World Weather Online. Available online: https://www.worldweatheronline.com (accessed on 13 July 2022).
- Liu, X.; Xu, W. Logarithmic Model Joint Inversion Method for Coseismic and Postseismic Slip: Application to the 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran. J. Geophys. Res. Solid Earth 2019, 124, 12034–12052. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.W.; Ding, X.L.; Huang, C.; Zhu, J.J.; Chen, Y.L. Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J. Photogramm. Remote Sens. 2008, 63, 621–634. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Rivalta, E.; Li, X. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia. Earth Planet. Sci. Lett. 2017, 476, 79–86. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosystems 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Decriem, J.; Árnadóttir, T.; Hooper, A.; Geirsson, H.; Sigmundsson, F.; Keiding, M.; Ófeigsson, B.; Hreinsdóttir, S.; Einarsson, P.; LaFemina, P. The 2008 May 29 earthquake doublet in SW Iceland. Geophys. J. Int. 2010, 181, 1128–1146. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Barnhart, W.; Lohman, R. Automated fault model discretization for inversions for coseismic slip distributions. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1. 0—A 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 2013, 15, 2658. [Google Scholar]
- Vavryčuk, V. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys. J. Int. 2014, 199, 69–77. [Google Scholar] [CrossRef]
- Warren-Smith, E.; Fry, B.; Wallace, L.; Chon, E.; Henrys, S.; Sheehan, A.; Mochizuki, K.; Schwartz, S.; Webb, S.; Lebedev, S. Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nat. Geosci. 2019, 12, 475–481. [Google Scholar] [CrossRef]
- Michael, A.J. Use of focal mechanisms to determine stress: A control study. J. Geophys. Res. 1987, 92, 357–368. [Google Scholar] [CrossRef]
- Zoback, M.L. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project. J. Geophys. Res. 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Hu, J.-C.; Angelier, J. Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. J. Geophys. Res. Solid Earth 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.J. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results. J. Geophys. Res. Solid Earth 1991, 96, 6303–6319. [Google Scholar] [CrossRef]
- Lund, B.; Townend, J. Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophys. J. Int. 2007, 170, 1328–1335. [Google Scholar] [CrossRef] [Green Version]
- Molnar, P.; Tapponnier, P. Cenozoic tectonics of Asia: Effects of a continental collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Avouac, J.P.; Tapponnier, P. Kinematic model of active deformation in central Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Buürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Ge, W.P.; Molnar, P.; Shen, Z.K.; Li, Q. Present-day crustal thinning in the southern and northern Tibetan plateau revealed by GPS measurements. Geophys. Res. Lett. 2015, 42, 5227–5235. [Google Scholar] [CrossRef]
- XU, J.; ZHAO, Z. Normal faulting type earthquake activities in the Tibetan plateau and its tectonic implication. Acta Geol. Sin. -Engl. Ed. 2010, 84, 135–144. [Google Scholar] [CrossRef]
- Liu, Q.Y.; van der Hilst, R.D.; Li, Y.; Yao, H.J.; Chen, J.H.; Guo, B.; Qi, S.H.; Wang, J.; Huang, H.; Li, S.C. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci. 2014, 7, 361–365. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; England, P.C.; Jackson, J.A.; Li, Z.; Parsons, B. Extension on the Tibetan plateau: Recent normal faulting measured by InSAR and body wave seismology. Geophys. J. Int. 2010, 183, 503–535. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yao, H.J.; Zhang, H.J.; Fang, H.J. The Community Velocity Model V.1.0 of Southwest China, Constructed from Joint Body- and Surface-Wave Travel-Time Tomography. Seismol. Res. Lett. 2021, 92, 2972–2987. [Google Scholar] [CrossRef]
- Huang, Z.; Ji, C.; Wu, H.; Shi, Y.; Geng, J.; Xu, M.; Han, C.; Wang, L. Reviews on the crustal structures and deformations in the southeastern margin of the Tibetan plateau. Rev. Geophys. Planet. Phys. 2021, 52, 291–307. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; He, Z.; Fang, L.; Chen, Z. Aseismic Slip and Cascade Triggering Process of Foreshocks Leading to the 2021 Mw 6.1 Yangbi Earthquake. Seismol. Res. Lett. 2022, 93, 1413–1428. [Google Scholar] [CrossRef]
- Vorobieva, I.; Gorshkov, A.; Mandal, P. Modelling the seismic potential of the Indo-Burman megathrust. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cadoni, E. Dynamic Characterization of Orthogneiss Rock Subjected to Intermediate and High Strain Rates in Tension. Rock Mech. Rock Eng. 2010, 43, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Zhang, Z.; Shao, Z.; Zhao, G. Block motions and strain partition on active faults in Northeast Tibet and their geodynamic implications. Terra Nova 2021, 33, 356–363. [Google Scholar] [CrossRef]
- Seeber, L.; Pêcher, A. Strain partitioning along the Himalayan arc and the Nanga Parbat antiform. Geology 1998, 26, 791–794. [Google Scholar] [CrossRef]
- Daout, S.; Doin, M.P.; Peltzer, G.; Lasserre, C.; Socquet, A.; Volat, M.; Sudhaus, H. Strain partitioning and present-day fault kinematics in NW Tibet from Envisat SAR interferometry. J. Geophys. Res. Solid Earth 2018, 123, 2462–2483. [Google Scholar] [CrossRef]
- Gui-Hua, C.; Xi-Wei, X.; Xue-Ze, W.; Ya-li, W. Kinematical transformation and slip partitioning of northern to eastern active boundary belt of Sichuan-Yunnan block. Seismol. Egology 2008, 30, 58. [Google Scholar]
- Li, Y.C.; Shan, X.J.; Qu, C.Y.; Zhang, Y.F.; Song, X.G.; Jiang, Y.; Zhang, G.H.; Nocquet, J.M.; Gong, W.Y.; Gan, W.J.; et al. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau. J. Asian Earth Sci. 2017, 150, 87–97. [Google Scholar] [CrossRef]
- Sheng, S.; Meng, L. Stress Field Variation During the 2019 Ridgecrest Earthquake Sequence. Geophys. Res. Lett. 2020, 47, e2020GL087722. [Google Scholar] [CrossRef]
- Hardebeck, J.L.; Okada, T. Temporal stress changes caused by earthquakes: A review. J. Geophys. Res. Solid Earth 2018, 123, 1350–1365. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; Radziminovich, N.A.; Fang, N.; Xie, L. Transtensional coseismic fault slip of the 2021 Mw 6.7 Turt Earthquake and heterogeneous tectonic stress surrounding the Hovsgol Basin, Northwest Mongolia. Tectonophysics 2022, 836, 229407. [Google Scholar] [CrossRef]
- Petit, C.; Déverchère, J.; Houdry, F.; San'kov, V.A.; Melnikova, V.I.; Delvaux, D. Present-day stress field changes along the Baikal rift and tectonic implications. Tectonics 1996, 15, 1171–1191. [Google Scholar] [CrossRef] [Green Version]
- Yale, D.P. Fault and stress magnitude controls on variations in the orientation of in situ stress. Geol. Soc. Lond. Spec. Publ. 2003, 209, 55–64. [Google Scholar] [CrossRef]
- Wileveau, Y.; Cornet, F.; Desroches, J.; Blumling, P. Complete in situ stress determination in an argillite sedimentary formation. Phys. Chem. Earth Parts A/B/C 2007, 32, 866–878. [Google Scholar] [CrossRef]
- Barbot, S.; Fialko, Y.; Sandwell, D. Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone. Geophys. J. Int. 2009, 179, 500–520. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.; Hodgetts, D.; Rarity, F.; Gawthorpe, R.L.; Sharp, I.R. Structural geology and 4D evolution of a half-graben: New digital outcrop modelling techniques applied to the Nukhul half-graben, Suez rift, Egypt. J. Struct. Geol. 2009, 31, 328–345. [Google Scholar] [CrossRef]
- McNamara, D.D.; Massiot, C.; Lewis, B.; Wallis, I.C. Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand. J. Geophys. Res. Solid Earth 2015, 120, 1243–1262. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Luis, J.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.; Tian, D. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
Source | Lon (°) | Lat (°) | Depth (km) | Strike (°) | Dip (°) | Rake (°) | Mw |
---|---|---|---|---|---|---|---|
USGS | 92.915 | 31.925 | 11.5 | 17/225 | 37/56 | −113/−74 | 5.7 |
GCMT | 92.92 | 31.85 | 19.4 | 354/237 | 50/62 | −142/−47 | 5.8 |
GFZ | 92.89 | 31.88 | 10 | 358/233 | 39/64 | −138/−58 | 5.7 |
IPGP | 92.899 | 31.906 | 10 | 7/232 | 43/56 | −126/−61 | 5.7 |
Li et al. (2021) | - | - | ~7 | 237 | 69 | −70 | 5.7 |
This study | 92.846 | 31.958 | 7.5 | 240 | 59 | −56 | 5.7 |
Interferogram | Primary (yyyymmdd) | Secondary (yyyymmdd) | Path | Direction | Heading Angle (°) | Incidence Angle (°) | Bperp (m) |
---|---|---|---|---|---|---|---|
AT143 | 20210312 | 20210324 | 143 | Ascending | 349.8 | 39.7 | 12 |
DT77 | 20210307 | 20210319 | 77 | Descending | 189.9 | 43.3 | 12 |
Parameters | Length (km) | Width (km) | Depth | Strike (°) | Dip (°) | Strike-Slip (cm) | Dip-Slip (cm) | E-Shift (km) | N-Shift (km) |
---|---|---|---|---|---|---|---|---|---|
Lower boundary | 0 | 0 | 0 | 180 | 0 | −1 | −1 | −20 | −20 |
Upper boundary | 20 | 20 | 20 | 300 | 90 | 1 | 1 | 20 | 20 |
Optimal Para. | 9.8 | 9.3 | 11.7 | 240.4 | 59.2 | 0.10 | −0.09 | −7.1 | 12.0 |
2.5% | 8.2 | 4.0 | 9.0 | 233.1 | 52.7 | 0.06 | −0.22 | −8.3 | 9.1 |
97.5% | 11.0 | 13.1 | 15.0 | 244.1 | 69.3 | 0.25 | −0.08 | −5.6 | 14.0 |
Subzones | N a | R c | Stress Regime | SHmax e | ||||
---|---|---|---|---|---|---|---|---|
Zone1 | 6 | 171/36 | 4/54 | 266/6 | 0.34 | 28 | SS | 174 (−6) |
Zone2 | 8 | 140/76 | 9/9 | 278/11 | 0.25 | 13 | NF | 007 |
Zone3 | 8 | 325/81 | 195/6 | 104/7 | 0.28 | 17 | NF | 014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xie, L.; Li, Y.; Han, B.; Chen, Z.; Xu, W. Role of the Nyainrong Microcontinent in Seismogenic Mechanism and Stress Partitioning: Insights from the 2021 Nagqu Mw 5.7 Earthquake. Remote Sens. 2022, 14, 3834. https://doi.org/10.3390/rs14153834
Liu X, Xie L, Li Y, Han B, Chen Z, Xu W. Role of the Nyainrong Microcontinent in Seismogenic Mechanism and Stress Partitioning: Insights from the 2021 Nagqu Mw 5.7 Earthquake. Remote Sensing. 2022; 14(15):3834. https://doi.org/10.3390/rs14153834
Chicago/Turabian StyleLiu, Xiaoge, Lei Xie, Yujiang Li, Bingquan Han, Zhidan Chen, and Wenbin Xu. 2022. "Role of the Nyainrong Microcontinent in Seismogenic Mechanism and Stress Partitioning: Insights from the 2021 Nagqu Mw 5.7 Earthquake" Remote Sensing 14, no. 15: 3834. https://doi.org/10.3390/rs14153834
APA StyleLiu, X., Xie, L., Li, Y., Han, B., Chen, Z., & Xu, W. (2022). Role of the Nyainrong Microcontinent in Seismogenic Mechanism and Stress Partitioning: Insights from the 2021 Nagqu Mw 5.7 Earthquake. Remote Sensing, 14(15), 3834. https://doi.org/10.3390/rs14153834