Digital Data and Semantic Simulation—The Survey of the Ruins of the Convent of the Paolotti (12th Century A.D.)
Abstract
:1. Introduction
2. The Ancient Site of Oppido Mamertina
3. Materials and Methods
3.1. Photogrammetric Survey
3.2. Data Analysis
4. Results
- -
- The “unstructured” model was transcribed into polygonal mesh. Starting from a dense point cloud of more than 106 million points, a mesh of 50 million polygons was created. This was then again cleaned, for the creation of orthophotos and a textured model to be given to the superintendency.
- -
- The 3D point cloud (Figure 7) was imported in e57 format into the Autodesk Revit 2020 software, dedicated to the informative modelling of artefacts. Using an indirect method, the typological characteristics were then recognised. Therefore, geometric configurations with clear semantic meaning were interpreted around the main fabrication entities, i.e., the modelling “families” predefined in the application used: walls, pillars, floors, etc., i.e., system structural types. To obtain the vaults, Autodesk Revit’s “Masses in situ” command was of fundamental importance. Through a process of “trial and error”, based on the dimensions of the arches obtained in the previous phase, the remains of the bays in the perimeter walls of the cloister and the distance between these and the pillars deduced from the orthophotos of the plan, it was possible to reproduce both the vaults located in the corner of the corridor and those located in front of each of the arches of the gallery. Hence, porticoes composed of concentrically duplicated semicircular arches that start at an offset of approximately 16 cm from the capitals of the pillars were obtained (Figure 8). It was thus possible to reconfigure the roof in this part of the cloister.
- -
- The level of detail (LoD) compatible with the objective set (LoD generic in the sense of the standards [UNI: 11337-4 2017]) was then established. The application used requires, in fact, with the morphological identification of the component, the contextual definition of the information that the photogrammetric acquisitions allow to provide with precision and accuracy (thickness length, width, volume, material stratigraphy).
- -
- Once the level of detail had been established, the problem to be faced was how to transcribe the irregular shapes of the point cloud into normalised configurations. Numerous problems were encountered to reconcile the singularity of each element detected with the standardisation necessary for the digital manipulation of the components.
- -
- Having set the point cloud as the origin of the workflow to make it possible to compare with mathematical certainty the discrepancy between the real model and the simplified one constructed, it was proceeded to digitally construct the component-objects according to the chosen level of detail (LoD) and therefore relative to both the geometric detail (LOG) and the appropriate informative detail (LoI). For this purpose, the analyses discussed in the previous Section 3.2 were useful: from the scaled profiles visible in the orthophotos (South) the measurements of the spans and arrows of the arch were obtained, and therefore the inclinations and angles useful for restoring the genesis of the cross vault considered the most suitable.
- -
- Definition of the different types of material used (local stone and brick) and explanation of why it was decided to use different construction techniques.
- -
- Definition and different representation of the data acquired through direct survey and data from analysis and calculation.
- -
- Any coeval sites that can be used as a possible comparison.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerquetti, M. The material and the immaterial. Towards a sustainable approach to management in the global context. Il Cap. Cult. Stud. Value Cult. Herit. 2015, 2, 247–269. [Google Scholar]
- ICOM Statutes, Adopted by the 22nd General Assembly in Vienna, Austria on 24 August 2007. Available online: https://icom.museum/en/resources/standards-guidelines/museum-definition/ (accessed on 20 August 2022).
- Liberti, R. Momenti e Figure Nella Storia Della Vecchia e Nuova Oppido—VII—Quaderni Mamertini—53-Litografia Diaco snc Quaderni Mamertini Reggio; Riveduto e Corretto: Parma, Italy, 2016. [Google Scholar]
- Docci, M. Metodi e Tecniche Integrate di Rilevamento per la Realizzazione di Modelli Virtuali Dell’architettura Della Città; Cangemi Editore: Milano, Italy, 2009; ISBN 9788849214154. [Google Scholar]
- Gonizzi Barsanti, S.; Remondino, F.; Fenández-Palacios, B.J.; Visintini, D. Critical Factors and Guidelines for 3D Surveying and Modelling in Cultural Heritage. Int. J. Herit. Digit. Era 2014, 3, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Migliari, R. (Ed.) Disegno come Modello; Edizioni Kappa: Roma, Italy, 2004. [Google Scholar]
- Cabaleiro, M.; Branco, J.M.; Sousa, H.S.; Conde, B. First results on the combination of laser scanner and drilling resistance tests for the assessment of the geometrical condition of irregular cross-sections of timber beams. Mater. Struct. 2018, 51, 99. [Google Scholar] [CrossRef]
- Kharroubi, A.; Hajji, R.; Billen, R.; Poux, F. Classification and Integration of Massive 3D Points Clouds in a Virtual Reality (VR) Environment. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, 42, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Poux, F.; Billen, R. A Smart Point Cloud Infrastructure for intelligent environments. In Laser Scanning; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351018869. [Google Scholar]
- Bassier, M.; Vergauwen, M.; Poux, F. Point Cloud vs. Mesh Features for Building Interior Classification. Remote Sens. 2020, 12, 2224. [Google Scholar] [CrossRef]
- Reza, M.; Lichti, D.D.; Ruwanpura, J.Y. Automatic Recognition of Common Structural Elements from Point Clouds for Automated Progress Monitoring and Dimensional Quality Control in Reinforced Concrete Construction. Remote Sens. 2019, 11, 1102. [Google Scholar] [CrossRef] [Green Version]
- The London Charter for the Computer-Based Visualisation of Cultural Heritage. 2009. Available online: http://www.londoncharter.org/fileadmin/templates/main/docs/london_charter_2_1_en.pdf (accessed on 20 August 2022).
- Bendicho, V.M.L.M. International Guidelines for Virtual Archaeology: The Seville Principles. In Good Practice in Archaeological Diagnostics. Natural Science in Archaeology; Corsi, C., Slapšak, B., Vermeulen, F., Eds.; Springer: Cham, Switzerland, 2012. [Google Scholar] [CrossRef]
- Brusaporci, S.; Trizio, I. La carta di Londra e il patrimonio architettonico. SCIRES 2013, 3, 55–68. [Google Scholar]
- Yang, L.; Cheng, J.C.; Wang, Q. Semi-automated generation of parametric BIM for steel structures based on terrestrial laser scanning data. Autom. Constr. 2020, 112, 103037. [Google Scholar] [CrossRef]
- Rossi, A. (ri)COSTRUIRE (in)DIGITALE in BIM-OGGI-Italia n 3 di Disegno Book Series; libreriauniversitaria.it: Padova, Italy, 2019. [Google Scholar]
- Quattrini, R.; Clini, P.; Nespeca, R.; Ruggeri, L. Measurement and Historical Information Building: Challenges and opportunities in the representation of semantically structured 3D content. Disegnarecon 2016, 9, 14.1–14.11. [Google Scholar]
- Costamagna, L.; Visonà, P. Oppido Mamertina: Calabria, Italia: Ricerche Archeologiche Nel Territorio e in Contrada Mell; Gangemi Editore: Rome, Italy, 1999. [Google Scholar]
- Liberti, R. Momenti e Figure Nella Storia Della Vecchia e Nuova Oppido-VI; Litografia Diaco snc: Reggio Calabria, Italy, 2003; Volume 45. [Google Scholar]
- Roma, G.; Coscarella, A.; Gallo, P.; La Marca, A.; Lanza, G. Oppido Mamertina (RC): La cattedrale di Oppido Vecchio (campagna di scavo 1996). Archeol. Postmedievale Soc. Ambiente Produzioni 1998, 2, 75–106. [Google Scholar]
- Remondino, F. From Point Cloud to Surface: The Modeling and Visualization Problem, International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2004, 34. Available online: https://www.isprs.org/proceedings/XXXIV/5-W10/ (accessed on 1 September 2022).
- Gonizzi Barsanti, S.; Giner, S.L.; Rossi, A. Towards a Multimodal Representation: Claudia Octavia’s Bequeathal. Remote Sens. 2022, 14, 429. [Google Scholar] [CrossRef]
- Martinez Espejo Zaragoza, I.; Caroti, G.; Piemonte, A. The use of image and laser scanner survey archives for cultural heritage 3D modelling and change analysis. ACTA IMEKO 2021, 10, 114. [Google Scholar] [CrossRef]
- Bevilacqua, M.G.; Caroti, G.; Piemonte, A.; Ulivieri, D. Reconstruction of Lost Architectural Volumes by Integration of Photogrammetry from Archive Imagery with 3D Models of the Status Quo. The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 119–125. [Google Scholar] [CrossRef]
- Parenti, R. La lettura stratigrafica delle murature in contesti archeologici e di restauro architettonico. Restauro E Città 1985, 1, 55–68. [Google Scholar]
- Dimier, A. L’art Cistercien Hors de France; Zodiaque: Paris, France, 1971. [Google Scholar]
- Kubach, H.E. Romanesque Architecture (History of World Architecture); Faber&Faber Ltd.: London, UK, 1979. [Google Scholar]
- Argan, G.C. L’architettura Protocristiana, Preromanica E Romanica; Edizioni Dedalo: Bari, Italy, 1978. [Google Scholar]
- Carbonara, G.; Desideri, I. Montecassino e L’architettura Campano-Abruzzese Nell’xi Secolo; Università Degli Studi di Roma, Istituto di Fondamenti Dell’architettura: Roma, Italy, 1981. [Google Scholar]
- Docci, M.; Migliari, R. Scienza Della Rappresentazione. Fondamenti e Applicazioni della Geometria Descrittiva; Carocci: Roma, Italy, 1992; ISBN 884300414X. [Google Scholar]
- Rossi, A. Il quadrato claustrale di sant cugat del Valles. In Melodie di pietre Torre del Greco (NA), Edizioni Scientifiche e Artistiche; Edizioni Scientifiche e Artistiche: Torre del Greco, Italy, 2014. [Google Scholar]
- Huerta, S. Galileo was wrong! The geometrical design of masonry arches. Nexus Netw. J. 2006, 8, 25–52. [Google Scholar] [CrossRef] [Green Version]
- Huerta, S. Oval Domes: History, Geometry and Mechanics. Nexus Netw. J. 2007, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A. From drawing to technical drawing. Nexus Netw. J. 2012, 14, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Rondelet, J.B. Traité Théorique et Pratique de L’art de Bâtir, III.; Firmin–Didot: Paris, France, 1805. [Google Scholar]
- Boito, C. Architettura del Medioevo in Italia; Oligo: Milano, Italy, 1881. [Google Scholar]
- Cattaneo, R. L’architettura in Italia dal sec. VI al 1000 Circa; Kessinger Publishing, LLC: Whitefish, MT, USA, 1889. [Google Scholar]
- Zevi, B. Lezioni di Storia Dell’architettura Italiana, I; Stab. Tipo Litografico V. Ferri: Roma, Italy, 1947. [Google Scholar]
- Fletcher, B. A History of Architecture; Taylor & Francis Ltd.: Abingdon-on-Thames, UK, 1996. [Google Scholar]
- Cataldi, G. Sistemi Statici in Architettura; Teorema Edizioni: Firenze, Italy, 1974. [Google Scholar]
- Pizzetti, G.; Zorgno Trisciuoglio, A.M. Principi Statici e Forme Strutturali; Utet: Torino, Italy, 1980. [Google Scholar]
- Benvenuto, E. La Scienza delle Costruzioni e il suo Sviluppo Storico; Sansoni: Firenze, Italy, 1981. [Google Scholar]
- Apollonio, F.I.; Giovannini, E.C. A paradata documentation methodology for the Uncertainty Visualization in digital reconstruction of CH artefacts. SCIRES-IT 2015, 5, 1–24. [Google Scholar]
- Arayici, Y.; Coates, P.; Koskela, L.; Kagioglou, M.; Usher, C.; O’Reilly, K. BIM adoption and implementation for architectural practices. Struct. Surv. 2011, 29, 7–25. [Google Scholar] [CrossRef] [Green Version]
- De Luca, L. Towards the Semantic-aware 3DDigitisation of Architectural Heritage: The “Notre-Dame de Paris” Digital Twin Project, SUMAC’20. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia Heritage Contents, Seattle, WA, USA, 12–16 October 2020; pp. 3–4. [Google Scholar] [CrossRef]
- Bolognesi, C.; Garagnani, S. From a Point Cloud Survey to a Mass 3D Modelling: Renaissance HBIM in Poggio a Caiano. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Frèzier, A.F. La Théorie et la Pratique de la Coupe des Pierres et Bois. T1 (Eds 1737–1739); Hachette Livre BNF: Strasbourg, Germany, 2012. [Google Scholar]
- Gruber, T.R. Towards principles for the design of ontologies used for knowledge sharing. In Formal Ontology in Conceptual Analysis and Knowledge Representation; Guarino, N., Poli, R., Eds.; Kluwer Academic Publishers: Deventer, The Netherlands, 1993. [Google Scholar]
- Neuhold, E. Interoperability and semantics: An introduction into the past and a look at the future. In Proceedings of the 10th European Conference on Product and Process Modelling (ECPPM 2014), Vienna, Austria, 17–19 September 2014; CRC Press/Balkema: Boca Raton, FL, USA, 2015; pp. 7–9. [Google Scholar]
- Fai, S.; Duckworth, T.; Graham, K.; Wood, N. Building Information Modelling and the conservation of modern heritage. In Proceedings of the 24th World Congress of Architecture, Tokyo, Union Internationale des Architectes (UIA), Tokyo, Japan, 25 September–1 October 2011. [Google Scholar]
- Sacco, P.L. Le Industrie Culturali E Creative e l’Italia: Una Potenzialità Inespressa su cui Scommettere. Fabbrica Della Cultura. 2016. Available online: http://www.fabbricacultura.com/wp-content/uploads/2013/11/industrie-culturali-creative_sole24.pdf (accessed on 24 August 2022).
- Verganti, R. Design Driven Innovation; Harvard Business Press: Cambridge, UK, 2009. [Google Scholar]
- Balzola, A.; Rosa, P. La Rete Fuori di sé; Feltrinelli: Milano, Italy, 2011. [Google Scholar]
- Boudrillard, J. Violence of the Virtual and Integral Reality. Int. J. Baudrillard Stud. 2005, 2, 1–16. [Google Scholar]
- Woodward, A.; Heesom, D. Implementing HBIM on conservation heritage projects: Lessons from renovation case studies. Int. J. Build. Pathol. Adapt. 2021, 39, 96–114. [Google Scholar] [CrossRef]
- Addison, A.; Santana Quintero, M.; Severo, M. Cultural heritage repositories: Digital archives for conservation and management. In Browsing Architecture: Metadata and Beyond; Zambelli, M., Janowiak, A.H., Neuckermans, H., Eds.; Fraunhofer IRB: Stuttgart, Germany, 2008; pp. 306–317. [Google Scholar]
- Kensek, K.K. Building Information Modeling, 1st ed.; Routledge: London, UK, 2014; ISBN 9780415717748. [Google Scholar]
- Kymmel, W. Building Information Modeling: Planning and Managing Construction Projects with 4D CAD and Simulations; McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonizzi Barsanti, S.; Giner, S.L.; Rossi, A. Digital Data and Semantic Simulation—The Survey of the Ruins of the Convent of the Paolotti (12th Century A.D.). Remote Sens. 2022, 14, 5152. https://doi.org/10.3390/rs14205152
Gonizzi Barsanti S, Giner SL, Rossi A. Digital Data and Semantic Simulation—The Survey of the Ruins of the Convent of the Paolotti (12th Century A.D.). Remote Sensing. 2022; 14(20):5152. https://doi.org/10.3390/rs14205152
Chicago/Turabian StyleGonizzi Barsanti, Sara, Santiago Lillo Giner, and Adriana Rossi. 2022. "Digital Data and Semantic Simulation—The Survey of the Ruins of the Convent of the Paolotti (12th Century A.D.)" Remote Sensing 14, no. 20: 5152. https://doi.org/10.3390/rs14205152
APA StyleGonizzi Barsanti, S., Giner, S. L., & Rossi, A. (2022). Digital Data and Semantic Simulation—The Survey of the Ruins of the Convent of the Paolotti (12th Century A.D.). Remote Sensing, 14(20), 5152. https://doi.org/10.3390/rs14205152