Structure-Preserving Random Noise Attenuation Method for Seismic Data Based on a Flexible Attention CNN
Abstract
:1. Introduction
2. Theory and Method
2.1. Attention Gates
2.2. Noise Level Map
2.3. Mixed Loss Function
3. Numerical Tests
3.1. Synthetic Data Testing
3.2. Real Data Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, X.; Zhong, T.; Li, Y. New suppression technology for low-frequency noise in desert region: The improved robust principal component analysis based on prediction of neural network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4680–4690. [Google Scholar] [CrossRef]
- Canales, L.L. Random noise reduction. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 1984; pp. 525–527. [Google Scholar]
- Zhang, J.; Li, Y.; Wu, N. Noise attenuation for seismic data by hyperbolic-trace time-frequency peak filtering. IEEE Geosci. Remote Sens. Lett. 2014, 12, 601–605. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Zhuang, G.; Zhang, C.; Han, X. 2D TFPF based on Contourlet transform for seismic random noise attenuation. J. Appl. Geophys. 2016, 129, 158–166. [Google Scholar] [CrossRef]
- Xiong, M.; Li, Y.; Wu, N. Random-noise attenuation for seismic data by local parallel radial-trace TFPF. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4025–4031. [Google Scholar] [CrossRef]
- Ma, H.; Qian, Z.; Li, Y.; Lin, H.; Shao, D.; Yang, B. Noise reduction for desert seismic data using spectral kurtosis adaptive bandpass filter. Acta Geophys. 2019, 67, 123–131. [Google Scholar] [CrossRef]
- Freire, S.L.M.; Ulrych, T.J. Application of singular value decomposition to vertical seismic profiling. Geophysics 1988, 53, 778–785. [Google Scholar] [CrossRef]
- Al-Yahya, K.M. Application of the partial karhunen-loève transform to suppress random noise in seismic sections 1. Geophys. Prospect. 1991, 39, 77–93. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Zhang, C. Noise suppression for microseismic data by non-subsampled shearlet transform based on singular value decomposition. Geophys. Prospect. 2018, 66, 894–903. [Google Scholar] [CrossRef]
- Zhang, R.; Ulrych, T.J. Physical wavelet frame denoising. Geophysics 2003, 68, 225–231. [Google Scholar] [CrossRef]
- Fomel, S.; Liu, Y. Seislet transform and seislet frame. Geophysics 2010, 75, V25–V38. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, J.; Hu, Z. 3D seismic denoising based on a low-redundancy curvelet transform. J. Geophys. Eng. 2015, 12, 566–576. [Google Scholar] [CrossRef]
- Hennenfent, G.; Herrmann, F.J. Seismic denoising with nonuniformly sampled curvelets. Comput. Sci. Eng. 2006, 8, 16–25. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, D.; Jin, Z.; Chen, X.; Zu, S.; Huang, W.; Gan, S. Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method. Geophys. J. Int. 2016, 206, 1695–1717. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Feng, D.; Chen, Y. De-aliased and de-noise cadzow filtering for seismic data reconstruction. Geophys. Prospect. 2020, 68, 553–571. [Google Scholar] [CrossRef]
- Naghizadeh, M.; Sacchi, M. Multidimensional de-aliased cadzow reconstruction of seismic records. Geophysics 2013, 78, A1–A5. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J.; Wang, W. Deep learning for denoising. Geophysics 2019, 84, V333–V350. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 2018, 27, 4608–4622. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Rashidi, M.; Samali, B.; Mohammadi, M.; Nguyen, T.N.; Zhou, X. Crack detection of concrete structures using deep convolutional neural networks optimized by enhanced chicken swarm algorithm. Struct. Health Monit. 2022, 21, 14759217211053546. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Gu, X.; Li, J. A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. 2019, 18, 143–163. [Google Scholar] [CrossRef] [Green Version]
- Yuqing, W.A.N.G.; WenKai, L.; JinLin, L.; Meng, Z.; YongKang, M. Random seismic noise attenuation based on data augmentation and CNN. Chin. J. Geophys. 2019, 62, 421–433. [Google Scholar]
- Zhang, M.; Liu, Y.; Chen, Y. Unsupervised Seismic Random Noise Attenuation Based on Deep Convolutional Neural Network IEEE Access 2019, 7, 179810–179822.
- Dong, X.T.; Li, Y.; Yang, B.J. Desert low-frequency noise suppression by using adaptive DnCNNs based on the determination of high-order statistic. Geophys. J. Int. 2019, 219, 1281–1299. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Lei, Y.; Tian, S.; Wang, T.; Patel, P.; Curran, W.J.; Jani, A.B.; Liu, T.; Yang, X. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Radiother. Oncol. 2019, 141, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wu, B. Attention and hybrid loss guided deep learning for consecutively missing seismic data reconstruction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–8. [Google Scholar] [CrossRef]
- Saad, O.M.; Oboué, Y.A.S.I.; Bai, M.; Samy, L.; Yang, L.; Chen, Y. Self-attention deep image prior network for unsupervised 3D seismic data enhancement. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In International Conference On Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Li, J.; Wu, X.; Hu, Z. Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar]
- Yu, S.; Ma, J.; Osher, S. Monte Carlo data-driven tight frame for seismic data recovery. Geophysics 2016, 81, V327–V340. [Google Scholar] [CrossRef]
- Li, W.; Wang, J. Residual learning of cycle-GAN for seismic data denoising. IEEE Access 2021, 9, 11585–11597. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, N.; Liu, C. Adaptive prediction filtering in txy domain for random noise attenuation using regularized nonstationary autoregression. Geophysics 2015, 80, V13–V21. [Google Scholar] [CrossRef]
0.3 | 0.4 | 0.5 | 0.6 | 0.7 | |
---|---|---|---|---|---|
SNR (dB) | 19.86 | 19.99 | 20.08 | 20.02 | 19.87 |
Methods | RNA | APF | DnCNN | FACNN |
---|---|---|---|---|
SNR (dB) | 13.98 | 18.99 | 18.96 | 20.08 |
SSIM | 0.781 | 0.871 | 0.854 | 0.918 |
Noise Level | 40 | 50 | 60 | 70 |
---|---|---|---|---|
DnCNN (dB) | 18.96 | 16.81 | 15.68 | 13.67 |
FACNN (dB) | 20.08 | 20.01 | 19.46 | 19.01 |
Methods | FACNN | Attention-CNN with Tradition Loss | U-Net with Mixed Loss |
---|---|---|---|
SNR (dB) | 20.13 | 19.45 | 19.36 |
SSIM | 0.921 | 0.906 | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, T.; Liu, H. Structure-Preserving Random Noise Attenuation Method for Seismic Data Based on a Flexible Attention CNN. Remote Sens. 2022, 14, 5240. https://doi.org/10.3390/rs14205240
Li W, Wu T, Liu H. Structure-Preserving Random Noise Attenuation Method for Seismic Data Based on a Flexible Attention CNN. Remote Sensing. 2022; 14(20):5240. https://doi.org/10.3390/rs14205240
Chicago/Turabian StyleLi, Wenda, Tianqi Wu, and Hong Liu. 2022. "Structure-Preserving Random Noise Attenuation Method for Seismic Data Based on a Flexible Attention CNN" Remote Sensing 14, no. 20: 5240. https://doi.org/10.3390/rs14205240
APA StyleLi, W., Wu, T., & Liu, H. (2022). Structure-Preserving Random Noise Attenuation Method for Seismic Data Based on a Flexible Attention CNN. Remote Sensing, 14(20), 5240. https://doi.org/10.3390/rs14205240