Regional Variability and Driving Forces behind Forest Fires in Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Model Setup
3. Results
Analysis of Importance of Random Forest Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinne, F.N.; Burns, J.; Kant, P.; Flannigan, M.; Kleine, M.; de Groot, B.; Wotton, D.M. Global Fire Challenges in a Warming World Summary Note of a Global Expert Workshop on Fire and Climate Change; Occasional Paper No. 32; IUFRO: Vienna, Austria, 2018. [Google Scholar]
- Sullivan, A.; Baker, E.; Kurvits, T. Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires; A UNEP Rapid Response Assessment: Nairobi, Kenya, 2022. [Google Scholar]
- Pausas, J.G.; Keeley, J.E. Wildfires as an ecosystem service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Flannigan, M.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holden, Z.A.; Swanson, A.; Luce, C.H.; Jolly, W.M.; Maneta, M.; Oyler, J.W.; Warren, D.A.; Parsons, R.; Affleck, D. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA 2018, 115, E8349–E8357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Solomun, M.K.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Migliavacca, M.; Dosio, A.; Camia, A.; Hobourg, R.; Houston-Durrant, T.; Kaiser, J.W.; Khabarov, N.; Krasovskii, A.A.; Marcolla, B.; Miguel-Ayanz, J.S.; et al. Modeling biomass burning and related carbon emissions during the 21st century in Europe. J. Geophys. Res. Biogeosci. 2013, 118, 1732–1747. [Google Scholar] [CrossRef]
- Khabarov, N.; Krasovskii, A.; Obersteiner, M.; Swart, R.; Dosio, A.; San-Miguel-Ayanz, J.; Durrant, T.; Camia, A.; Migliavacca, M. Forest fires and adaptation options in Europe. Reg. Environ. Chang. 2014, 16, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Romeiro, J.M.N.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural disturbances risks in European Boreal and Temperate forests and their links to climate change—A review of modelling approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Lidskog, R.; Johansson, J.; Sjödin, D. Wildfires, responsibility and trust: Public understanding of Sweden’s largest wildfire. Scand. J. For. Res. 2019, 34, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Tornevi, A.; Andersson, C.; Carvalho, A.; Langner, J.; Stenfors, N.; Forsberg, B. Respiratory Health Effects of Wildfire Smoke during Summer of 2018 in the Jämtland Härjedalen Region, Sweden. Int. J. Environ. Res. Public Health 2021, 18, 6987. [Google Scholar] [CrossRef]
- Hantson, S.; Kelley, D.I.; Arneth, A.; Harrison, S.P.; Archibald, S.; Bachelet, D.; Forrest, M.; Hickler, T.; Lasslop, G.; Li, F.; et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 2020, 13, 3299–3318. [Google Scholar] [CrossRef]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The status and challenge of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef] [Green Version]
- Krasovskii, A.; Khabarov, N.; Migliavacca, M.; Kraxner, F.; Obersteiner, M. Regional aspects of modelling burned areas in Europe. Int. J. Wildland Fire 2016, 25, 811. [Google Scholar] [CrossRef] [Green Version]
- Krasovskii, A.; Khabarov, N.; Pirker, J.; Kraxner, F.; Yowargana, P.; Schepaschenko, D.; Obersteiner, M. Modeling Burned Areas in Indonesia: The FLAM Approach. Forests 2018, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Galizia, L.F.; Curt, T.; Barbero, R.; Rodrigues, M. Understanding fire regimes in Europe. Int. J. Wildland Fire 2022, 31, 56. [Google Scholar] [CrossRef]
- Pinto, G.; Rousseu, F.; Niklasson, M.; Drobyshev, I. Effects of human-related and biotic landscape features on the occurrence and size of modern forest fires in Sweden. Agric. For. Meteorol. 2020, 291, 108084. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.W.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Drobyshev, I.; Niklasson, M.; Linderholm, H.W. Forest fire activity in Sweden: Climatic controls and geographical patterns in 20th century. Agric. For. Meteorol. 2012, 154–155, 174–186. [Google Scholar] [CrossRef]
- Van Wagner, C.E.; Pickett, T.L. Equation and FORTRAN Program for the Canadian Forest Fire Weather Index System; The Canadian Forestry Service: Ottawa, ON, Canada, 1985. [Google Scholar]
- Lawson, B.D.; Armitage, O.B. Weather Guide for the Canadian Forest Fire Danger Rating System; Canadian Forest Service: Edmonton, AB, Canada, 2008. [Google Scholar]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Pettinari, M.L.; Lizundia-Loiola, J.; Chuvieco, E. ESA CCI ECV Fire Disturbance: D4. 2 Product User Guide-MODIS, version 1.0; European Space Agency: Didcot, UK, 2020.
- Elia, M.; D’Este, M.; Ascoli, D.; Giannico, V.; Spano, G.; Ganga, A.; Colangelo, G.; Lafortezza, R.; Sanesi, G. Estimating the probability of wildfire occurrence in Mediterranean landscapes using Artificial Neural Networks. Environ. Impact Assess. Rev. 2020, 85, 106474. [Google Scholar] [CrossRef]
- Nunes, A.N. Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl. Geogr. 2012, 34, 576–586. [Google Scholar] [CrossRef]
- Mcgrath, M.; Ganzenmüller, R.; Balkovic, J.; Walther, S.; Kuhnert, M.; Vizzarri, M.; Schelhaas, M.J.; Schepaschenko, D.; Krasovskii, A.; Nabuurs, G.J.; et al. VERIFY Observation-Based System for Monitoring and Verification of Greenhouse Gases GA Number 776810, RIA Deliverable Number (Relative in WP) D3.5 Deliverable Name: Second Bottom-up Model Simulations. 2021. Available online: https://verifydb.lsce.ipsl.fr/thredds/catalog/verify/WP3/catalog.html (accessed on 10 July 2021).
- Chuvieco, E.; Pettinari, M.L.; Lizundia-Loiola, J.; Storm, T.; Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel Product. version 5.1. Centre for Environmental Data Analysis: Didcot, UK, 2018. [Google Scholar] [CrossRef]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol. Indic. 2016, 64, 72–84. [Google Scholar] [CrossRef]
- Milanović, S.; Marković, N.; Pamučar, D.; Gigović, L.; Kostić, P.; Milanović, S. Forest Fire Probability Mapping in Eastern Serbia: Logistic Regression versus Random Forest Method. Forests 2020, 12, 5. [Google Scholar] [CrossRef]
- European Commission; Gazzard, R.; Müller, M.; Sciunnach, R.; Pecl, J.; Konstantinov, V.; Sbirnea, R.; Cruz, M.; Chassagne, F.; Nugent, C.; et al. Forest Fires in Europe, Middle East and North Africa 2018; Joint Research Centre: Ispra, Italy, 2019. [Google Scholar]
- MSB. Fires in Forest or Land. 2022. Available online: https://ida.msb.se/ida2#page=3b3f50b4-48d8-44da-aba5-b91136ceb57b (accessed on 10 July 2021).
- Thompson, M.P.; MacGregor, D.G.; Dunn, C.J.; Calkin, D.E.; Phipps, J. Rethinking the Wildland Fire Management System. J. For. 2018, 116, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Defourny, P.; Lamarche, C.; Bontemps, S.; De Maet, T.; Van Bogaert, E.; Moreau, I.; Brockmann, C.; Boettcher, M.; Kirches, G.; Wevers, J.; et al. Land Cover CCI Product User Guide Version 2.0. Louvain-la-Neuve, Belgium. Tech. Rep. 2017. [Google Scholar]
- Dept. of Forest Resource Management. SLU Forest Map; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2010. [Google Scholar]
- Lesiv, M.; Schepaschenko, D.; Buchhorn, M.; See, L.; Dürauer, M.; Georgieva, I.; Jung, M.; Hofhansl, F.; Schulze, K.; Bilous, A.; et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 2022, 9, 1–14. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Miller, J.D.; Preisler, H.K. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 2017, 8, e01794. [Google Scholar] [CrossRef] [Green Version]
- Mangiameli, M.; Mussumeci, G.; Cappello, A. Forest Fire Spreading Using Free and Open-Source GIS Technologies. Geomatics 2021, 1, 50–64. [Google Scholar] [CrossRef]
- Arora, V.K.; Melton, J.R. Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat. Commun. 2018, 9, 1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, Z.; Lohmander, P.; Kašpar, J.; Marušák, R. The Effect of Road Networks on the Forest Wildfires’ Size. Available online: https://presentations.copernicus.org/EGU21/EGU21-12000_presentation.pdf (accessed on 3 November 2022).
- Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World (GPW), v4; NASA Socioeconomic Data and Applications Center (SEDAC): New York, NY, USA, 2018.
- OpenStreetMap Contributors. Planet Dump. 2015. Available online: https://planet.openstreetmap.org (accessed on 8 June 2020).
- European Environment Agency (EEA). Corine Land Cover (CLC) 2018, Version 2020_20u1; EEA: Copenhagen, Denmark, 2020.
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2012, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Vindskyddskartan. The App Vindskyddskartan (Shelter Map); Sweden. 2020. Available online: https://vindskyddskartan.se/en/app (accessed on 20 October 2022).
- Swedish Meteorological and Hydrological Institute. Lightning Charges Per Day (SMHI). 2021. Available online: https://www.smhi.se/data/meteorologi/aska/blixt-dygn/ (accessed on 20 October 2022).
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Boulanger, Y.; Parisien, M.-A.; Wang, X. Model-specification uncertainty in future area burned by wildfires in Canada. Int. J. Wildland Fire 2018, 27, 164. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team. Package ‘caret’. R J. 2020, 223, 7. [Google Scholar]
- Amiro, B.D.; Logan, K.A.; Wotton, B.M.; Flannigan, M.; Todd, J.B.; Stocks, B.J.; Martell, D.L. Fire weather index system components for large fires in the Canadian boreal forest. Int. J. Wildland Fire 2004, 13, 391–400. [Google Scholar] [CrossRef]
- Venäläinen, A.; Aalto, J. Climate Change and Forest Management Affect Forest Fire Risk in Fennoscandia; Ilmatieteen laitos—Finnish Meteorological Institute: Helsinki, Finland, 2021. [Google Scholar]
- Bistinas, I.; Oom, D.; Sá, A.; Harrison, S.; Prentice, I.C.; Pereira, J.M.C. Relationships between Human Population Density and Burned Area at Continental and Global Scales. PLoS ONE 2013, 8, e81188. [Google Scholar] [CrossRef] [PubMed]
- Knorr, W.; Kaminski, T.; Arneth, A.; Weber, U. Impact of human population density on fire frequency at the global scale. Biogeosciences 2014, 11, 1085–1102. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.M.; Vacik, H.; Diendorfer, G.; Arpaci, A.; Formayer, H.; Gossow, H. Analysis of lightning-induced forest fires in Austria. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2012, 111, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Cimdins, R.; Krasovskiy, A.; Kraxner, F. Regional Variability and Driving Forces behind Forest Fires in Sweden. Environ. Sci. Proc. 2022, 17, 23. [Google Scholar] [CrossRef]
Nr. | Variable | Temporal Resolution | Original Spatial Resolution, m | Source |
---|---|---|---|---|
1 | Fine Fuel Moisture Code | Monthly | 1000 | [31] |
2 | lightning | Monthly | 1000 | [51] |
3 | MODIS FireCCI_5_1 | Monthly | 250 | [32] |
4 | stand volume | Static | 25 | [39] |
5 | deciduous tree volume | Static | ||
6 | stand age | Static | ||
7 | forest management | Static | 100 | [40] |
8 | elevation maximum | Static | 25 | [41] |
9 | elevation average | Static | ||
10 | mean slope | Static | ||
11 | mean aspect | Static | ||
12 | population density | Static | 1000 | [46] |
13 | road density | Static | Vector (lines) | [47] |
14 | lake density | Static | 250 | [48] |
15 | campsites | Static | Vector (points) | [50] |
AUC | ||
---|---|---|
Validation | All | |
Zone 1 | 0.875 | 0.961 |
Zone 2 | 0.999 | 0.999 |
Zone 3 | 0.990 | 0.997 |
Zone 4 | 0.903 | 0.951 |
Zone 5 | 0.950 | 0.983 |
Zone 6 | 1.000 | 1.000 |
Zone 1 | Zone 2 | Zone 3 | Zone 4 | Zone 5 | Zone 6 | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value | Rank | Value |
FFMC | 9 | 31.3 | 2 | 84.6 | 1 | 100.0 | 1 | 100.0 | 1 | 100.0 | 1 | 100.0 | 2.5 | 86.0 |
lightning | 7 | 35.6 | 7 | 20.7 | 15 | 0.0 | 14 | 7.8 | 15 | 0.0 | 9 | 10.9 | 11.2 | 12.5 |
latitude | 1 | 100.0 | 1 | 100.0 | 2 | 44.7 | 2 | 81.0 | 2 | 72.4 | 2 | 70.8 | 1.7 | 78.2 |
lakes | 5 | 52.9 | 12 | 6.9 | 9 | 18.9 | 10 | 25.8 | 11 | 12.2 | 9 | 10.9 | 9.3 | 21.3 |
roads | 3 | 73.9 | 9 | 16.5 | 10 | 18.1 | 7 | 34.0 | 10 | 14.6 | 4 | 53.2 | 7.2 | 35.1 |
stand vol. | 4 | 55.5 | 13 | 4.2 | 5 | 25.2 | 6 | 34.2 | 3 | 36.1 | 8 | 28.3 | 6.5 | 30.6 |
DEM max | 6 | 45.3 | 5 | 29.0 | 7 | 23.0 | 9 | 29.7 | 5 | 31.3 | 7 | 40.8 | 6.5 | 33.2 |
DEM avg | 8 | 32.9 | 6 | 26.3 | 6 | 24.0 | 5 | 34.8 | 6 | 28.7 | 3 | 64.2 | 5.7 | 35.2 |
population | 2 | 91.3 | 4 | 32.6 | 3 | 39.8 | 3 | 60.3 | 13 | 11.1 | 6 | 43.2 | 5.2 | 46.4 |
deciduous vol. | 15 | 0.0 | 14 | 4.1 | 13 | 14.5 | 13 | 16.8 | 12 | 11.2 | 9 | 10.9 | 12.7 | 9.6 |
stand age | 10 | 28.9 | 8 | 20.7 | 12 | 15.4 | 12 | 20.2 | 9 | 17.7 | 15 | 0.0 | 11.0 | 17.2 |
slope | 14 | 12.9 | 3 | 44.1 | 8 | 19.1 | 11 | 24.1 | 8 | 18.6 | 5 | 46.5 | 8.2 | 27.6 |
aspect | 13 | 21.8 | 11 | 12.9 | 11 | 17.9 | 4 | 41.5 | 7 | 20.0 | 13 | 9.5 | 9.8 | 20.6 |
campsites | 11 | 26.9 | 15 | 0.0 | 14 | 3.9 | 15 | 0.0 | 14 | 2.8 | 9 | 10.9 | 13.0 | 7.4 |
forest management | 11 | 26.9 | 10 | 14.3 | 4 | 32.5 | 8 | 30.1 | 4 | 34.2 | 14 | 7.0 | 8.5 | 24.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimdins, R.; Krasovskiy, A.; Kraxner, F. Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sens. 2022, 14, 5826. https://doi.org/10.3390/rs14225826
Cimdins R, Krasovskiy A, Kraxner F. Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sensing. 2022; 14(22):5826. https://doi.org/10.3390/rs14225826
Chicago/Turabian StyleCimdins, Reinis, Andrey Krasovskiy, and Florian Kraxner. 2022. "Regional Variability and Driving Forces behind Forest Fires in Sweden" Remote Sensing 14, no. 22: 5826. https://doi.org/10.3390/rs14225826
APA StyleCimdins, R., Krasovskiy, A., & Kraxner, F. (2022). Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sensing, 14(22), 5826. https://doi.org/10.3390/rs14225826