Spatio-Temporal Dynamics of National Characteristic Towns in China Using Nighttime Light Data
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Sources
2.3. Overview Methods
2.4. Identification of Expanding Characteristic Towns
2.5. Measuring the Expansion of Characteristic Towns
3. Results
3.1. Spatial Distribution of Expanding NCTs
3.2. Temporal Changes in the Number of Expanding NCTs
3.3. NCT Expansion Intensity and Ratio
4. Discussion
4.1. Are Characteristic Towns Expanding?
4.2. Advantages of Identifying Expanding NCTs Using Nighttime Light Data
4.3. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, X.; Wang, J.; Li, Y.; Feng, Z.; Wang, Q. Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China. Land Use Policy 2021, 109, 105590. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, R.; Tong, X.; Shafizadeh-Moghadam, H. How much can temporally stationary factors explain cellular automata-based simulations of past and future urban growth? Comput. Environ. Urban Syst. 2019, 76, 150–162. [Google Scholar] [CrossRef]
- Seto, K.C.; Sanchez-Rodriguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Corbiere, M. Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades. GIScience Remote Sens. 2015, 52, 746–764. [Google Scholar] [CrossRef]
- Binns, T.; Nel, E. The village in a game park: Local response to the demise of coal mining in KwaZulu-Natal, South Africa. Econ. Geogr. 2003, 79, 41–66. [Google Scholar] [CrossRef]
- Malý, J. Small towns in the context of “borrowed size” and “agglomeration shadow” debates: The case of the south moravian region (Czech republic). Eur. Ctry. 2016, 8, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Filipovi´c, M.; Kokotovi´c, K.; Drobnjakovi´c, M. Small towns in serbia-The “bridge” between the urban and the rural. Eur. Ctry. 2016, 8, 462–480. [Google Scholar]
- Broadway, M. Implementing the slow life in southwest Ireland: A case study of Clonakilty and local food. Geogr. Rev. 2015, 105, 216–234. [Google Scholar] [CrossRef]
- Mayer, H.; Knox, P. Small-town sustainability: Prospect in the second modernity. Eur. Plan. Stud. 2010, 18, 1545–1565. [Google Scholar] [CrossRef]
- Wirth, P.; Elis, V.; Müller, B.; Yamamoto, K. Peripheralisation of small towns in Germany and Japan-Dealing with economic decline and population loss. J. Rural Stud. 2016, 47, 62–75. [Google Scholar] [CrossRef]
- Wu, Y. The controversy and definition of the concept of small towns in China. Dev. Small Cities Towns 2014, 32, 50–55. [Google Scholar]
- Tong, Y.; Liu, W.; Li, C.; Zhang, J.; Ma, Z. Understanding patterns and multilevel influencing factors of small town shrinkage in Northeast China. Sustain. Cities Soc. 2021, 68, 102811. [Google Scholar] [CrossRef]
- Kühn, M. Small towns in peripheral regions of Germany. Ann. Univ. Paedagog. Crac. Studia Geogr. 2015, 8, 29–38. [Google Scholar]
- Nel, E.; Connelly, S.; Stevenson, T. New Zealand’s small town transition: The experience of demographic and economic change and place based responses. N. Z. Geog. 2019, 75, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.T.; Phelps, N.A. ‘Featured town’ fever: The anatomy of a concept and its elevation to national policy in China. Habitat Int. 2019, 87, 44–53. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Deng, X.; Hui, E. Development of characteristic towns in China. Habitat Int. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Wang, D.W.; Li, Y. Typical problems of characteristic town development and sustainable promotion strategies. Econ. Rev. J. 2019, 8, 69–75. [Google Scholar]
- Li, Y.F.; Ma, H.D. Cold Thinking in the Construction of characteristic town: Cultural absorption and inheritance in the construction of characteristic town. Gov. Res. 2018, 3, 113–121. [Google Scholar]
- Fu, X.D.; Fu, J.S. The Theory Origin and Enlightenment of Leading Industrial Embeddedness. Reg. Econ. Rev. 2017, 33, 26–32. [Google Scholar]
- Sheng, S.H.; Zhang, W.M. Characteristic town: A form of industrial spatial organization. Zhejiang Soc. Sci. 2016, 19, 36–38. [Google Scholar]
- Yao, S.J. Governance Confluence in the Integration of Urban and Rural Areas: Policy Issues Based on "characteristic towns". Soc. Sci. Res. 2017, 39, 45–50. [Google Scholar]
- Zeng, J.; Ci, F. The construction of characteristic towns under the background of new urbanization. Macroecon. Manag. 2016, 12, 51–56. [Google Scholar]
- Zhang, J.F. The path and model of characteristic town construction: Taking Datong City, Shanxi Province as an example. China Agric. Resour. Reg. Plan. 2017, 38, 145–151. [Google Scholar]
- Zhou, X.H. Industry Transformation and Cultural Reconstruction: The Path of Creating characteristic towns. Nanjing Soc. Sci. 2017, 28, 12–19. [Google Scholar]
- Xie, H.; Li, Y.H.; Wei, Y.Y. Study on the spatial structure characteristics and influencing factors of characteristic towns in Zhejiang Province. Sci. Geogr. Sin. 2018, 38, 1283–1291. [Google Scholar]
- Fang, Y.L.; Huang, Z.F.; Li, J.L.; Wang, F. The spatial distribution and industrial characteristics of Chinese characteristic towns. J. Nat. Resour. 2019, 34, 1273–1284. [Google Scholar]
- Ma, R.F.; Zhou, X.J.; Li, Q. The regional types of characteristic towns in the Yangtze River Delta and their adaptive construction paths. J. Geogr. 2019, 39, 912–919. [Google Scholar]
- Zou, Y.; Zhao, W. Searching for a new dynamic of industrialization and urbanization: Anatomy of China’s characteristic town program. Urban Geogr. 2018, 39, 1060–1069. [Google Scholar] [CrossRef]
- Liu, T. Characteristic town: New exploration in the process of Zhejiang’s new urbanization. Zhejiang Econ. 2017, 9, 8–10. [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Notice on the Publication of the National Characteristics Towns Demonstration List (First Batches) by Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 14 October 2016. Available online: http://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201610/20161014_229170.html (accessed on 20 October 2021).
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Notice on the Publication of the National Characteristics Towns Demonstration List (Second Batches) by Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 22 August 2017. Available online: http://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201708/20170828_233078.html (accessed on 20 October 2021).
- Liang, Q.M.; Fan, Y.; Wei, Y.M. Multi-regional input-output model for regional energy requirements and CO2 emissions in China. Energy Policy 2007, 35, 1685–1700. [Google Scholar] [CrossRef]
- Deng, J.X.; Liu, X.; Wang, Z. Characteristics analysis and factor decomposition based on the regional difference changes in China’s CO2 emission. J. Nat. Resour. 2014, 29, 189–200. [Google Scholar]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Wang, X.Q.; Qi, W.; Liu, S.H. Spatial distribution characteristics and related factors of small towns in China. Geogr. Res. 2020, 39, 319–336. [Google Scholar]
- Huang, Q.X.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Lin, H.X.; Chen, Y.Q.; Blaschke, T.; Luo, L.W.; Xu, Z.H.; Hu, Y.N.; Zhao, M.Y.; Wu, J.S. Spatiotemporal evolution of urban agglomerations in China during 2000–2012: A nighttime light approach. Landsc. Ecol. 2020, 35, 421–434. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Chen, X. Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data. Remote Sens. 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Bernt, M. The limits of shrinkage: Conceptual pitfalls and alternatives in the discussion of urban population loss. Int. J. Urban Reg. Res. 2015, 40, 441–450. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Huang, Q.; He, C.; Gao, B.; Yang, Y.; Liu, Z.; Zhao, Y.; Dou, Y. Detecting the 20-year city-size dynamics in China with a rank clock approach and DMSP/OLS nighttime data. Landsc. Urban Plan. 2015, 137, 138–148. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.Y.; Yao, S.J.; Qian, X.J.; Wang, C.X.; Wu, B.; Wu, J.P. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Oswalt, P.; Rieniets, T. Atlas of Shrinking Cities; Hatje Cantz: Ostfildern, Germany, 2006. [Google Scholar]
- Wu, K.; Li, Y.C. Research progress of urban land use and its ecosystem services in the context of urban shrinkage. J. Nat. Resour. 2019, 34, 1121–1134. [Google Scholar] [CrossRef]
- Zhao, J.C.; Ji, G.X.; Yue, Y.L.; Lai, Z.Z.; Chen, Y.L.; Yang, D.Y.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Liu, J.W. Current situation, hotspot and trend of characteristic town research: Visual analysis based on CNKI and CiteSpace. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 107–117. [Google Scholar]
- Sun, Z. Spatial distribution characteristics and influencing factors of characteristic towns in China. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 205–214. [Google Scholar]
- Lu, P.; Zhang, J.H.; Wang, C.; Zhao, L. Classification and spatial distribution features of characteristic towns in China. Econ. Geogr. 2020, 40, 52–62. [Google Scholar]
- Wang, Z.F.; Liu, Q.F. The spatial distribution and influencing factors of national characteristic towns in China. Sci. Geogr. Sin. 2020, 40, 419–427. [Google Scholar]
Data | Data Description | Time Range | Data Source |
---|---|---|---|
DMSP/ OLS | Annual nighttime stable light data from Version 4 DMSP/OLS Nighttime Light Time Series datasets | 2000–2020 | https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD (accessed on 20 October 2021) |
NPP/VIIRS | Monthly nighttime light data from Version 1 VIIRS Day/Night Band Nighttime Light datasets | ||
Boundaries | Shape file of county, provincial, and national level regions | 2019 | National Catalogue Service for Geographic Information (https://www.webmap.cn/commres.do?method=result100W) (accessed on 20 October 2021) |
Economic Region | Province | Number of Expanding NCTs | Proportion of Expanding NCTs | |
---|---|---|---|---|
A (%) | B (%) | |||
NE | Jilin | 2 | 6.061 | 0.858 |
Liaoning | 8 | 24.242 | 3.433 | |
Heilongjiang | 4 | 12.121 | 1.717 | |
Total | 14 | 42.424 | 6.009 | |
North | Beijing | 7 | 15.217 | 3.004 |
Tianjin | 4 | 8.696 | 1.717 | |
Hebei | 9 | 19.565 | 3.863 | |
Shandong | 15 | 32.609 | 6.438 | |
Total | 35 | 76.087 | 15.021 | |
East | Shanghai | 8 | 14.815 | 3.433 |
Jiangsu | 20 | 37.037 | 8.584 | |
Zhejiang | 20 | 37.037 | 8.584 | |
Total | 48 | 88.889 | 20.601 | |
South | Guangdong | 18 | 43.902 | 7.725 |
Hainan | 4 | 9.756 | 1.717 | |
Fujian | 11 | 26.829 | 4.721 | |
Total | 33 | 80.488 | 14.163 | |
MYR | Shanxi | 10 | 18.868 | 4.292 |
Shaanxi | 5 | 9.434 | 2.146 | |
Henan | 6 | 11.321 | 2.575 | |
Inner Mongolia | 8 | 15.094 | 3.433 | |
Total | 29 | 54.717 | 12.446 | |
Central | Anhui | 9 | 15.254 | 3.863 |
Jiangxi | 3 | 5.085 | 1.288 | |
Hubei | 8 | 13.559 | 3.433 | |
Hunan | 4 | 6.780 | 1.717 | |
Total | 24 | 40.678 | 10.3 | |
SW | Sichuan | 8 | 10.667 | 3.433 |
Guangxi | 8 | 10.667 | 3.433 | |
Yunnan | 7 | 9.333 | 3.004 | |
Guizhou | 4 | 5.333 | 1.717 | |
Chongqing | 5 | 6.667 | 2.146 | |
Total | 32 | 42.667 | 13.734 | |
NW | Gansu | 5 | 12.821 | 2.146 |
Qinghai | 3 | 7.692 | 1.288 | |
Ningxia | 3 | 7.692 | 1.288 | |
Xizang | 1 | 2.564 | 0.429 | |
Xinjiang | 6 | 15.385 | 2.575 | |
Total | 18 | 46.154 | 7.725 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; He, T. Spatio-Temporal Dynamics of National Characteristic Towns in China Using Nighttime Light Data. Remote Sens. 2022, 14, 598. https://doi.org/10.3390/rs14030598
Song H, He T. Spatio-Temporal Dynamics of National Characteristic Towns in China Using Nighttime Light Data. Remote Sensing. 2022; 14(3):598. https://doi.org/10.3390/rs14030598
Chicago/Turabian StyleSong, Haipeng, and Tingting He. 2022. "Spatio-Temporal Dynamics of National Characteristic Towns in China Using Nighttime Light Data" Remote Sensing 14, no. 3: 598. https://doi.org/10.3390/rs14030598
APA StyleSong, H., & He, T. (2022). Spatio-Temporal Dynamics of National Characteristic Towns in China Using Nighttime Light Data. Remote Sensing, 14(3), 598. https://doi.org/10.3390/rs14030598