Strain-Rates from GPS Measurements in the Ordos Block, China: Implications for Geodynamics and Seismic Hazards
Abstract
:1. Introduction
2. Tectonic Setting
3. Data and Method
3.1. GPS Data
3.2. Method
3.3. Validation of the Method
4. Strain Rate Results
5. Discussions
5.1. Comparison of the Strain Rates with Others
5.2. Implications for Geodynamics and Seismic Hazard
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Deng, Q.; Zhang, G.; Ma, J.; Gan, W.; Min, W.; Mao, F.; Wang, Q. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Ser. D Earth Sci. 2003, 46, 13–24. [Google Scholar]
- Zhang, Y.Q.; Liao, C.Z.; Shi, W.; Hu, B. Neotectonic evolution of the peripheral zones of the Ordos Basin and geodynamic setting. Geol. J. China Univ. 2006, 12, 285–297. [Google Scholar]
- Deng, Q.; Sung, F.; Zhu, S.; Li, M.; Wang, T.; Zhang, W.; Burchfiel, B.C.; Molnar, P.; Zhang, P. Active faulting and tectonics of the Ningxia-Hui autonomous region, China. J. Geophys. Res. 1984, 89, 4427–4445. [Google Scholar]
- Deng, Q.D.; Cheng, S.P.; Min, W. Discussion on Cenozoic tectonics and dynamics of Ordos Block. J. Geomech. 1999, 5, 20–26. [Google Scholar]
- Deng, Q.; Liao, Y. Paleoseismology along the range-front fault of Helan Mountains, north central China. J. Geophys. Res. Solid Earth 1996, 101, 5873–5893. [Google Scholar] [CrossRef]
- Wang, C.Y.; Sandvol, E.; Zhu, L.; Lou, H.; Yao, Z.; Luo, X. Lateral variation of crustal structure in the Ordos Block and surrounding regions, North China, and its tectonic implications. Earth Planet. Sci. Lett. 2014, 387, 198–211. [Google Scholar] [CrossRef]
- Qu, W.; Lu, Z.; Zhang, M.; Zhang, Q.; Wang, Q.; Zhu, W.; Qu, F. Crustal strain fields in the surrounding areas of the Ordos Block, central China, estimated by the least-squares collocation technique. J. Geodyn. 2017, 106, 1–11. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, X.; Ye, S.; Lai, X.; Wei, Z.; Chen, J.; Ning, J.; Xu, H.; Ding, G. Contemporary crustal movement of continental China obtained by Global Positioning System (GPS) measurements. Chin. Sci. Bull. 2001, 46, 1552–1554. [Google Scholar] [CrossRef]
- Zhu, S.B.; Cai, Y.E.; Shi, Y.L. Computation of the present-day strain rate field of the Qinghai-Tibetan plateau and its geodynamic implications. Chin. J. Geophys. 2005, 48, 1053–1061. [Google Scholar] [CrossRef]
- Zhu, S.; Cai, Y.; Shi, Y. The contemporary tectonic strain rate field of continental China predicted from GPS measurements and its geodynamic implications. Pure Appl. Geophys. 2006, 163, 1477–1493. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, Y. Estimation of GPS strain rate and its error analysis in the Chinese continent. J. Asian Earth Sci. 2011, 40, 351–362. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.Z.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; You, X.; Niu, Z.; Wu, J.; Xi, Y.; Liu, J. Present-day crustal deformation in China constrained by global positioning system measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Shen, Z.K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Wang, Q.; Zhang, P.; Li, Z.; Li, Y.; Zhuang, W. “Frame wobbling” causing crustal deformation around the Ordos Block. Geophys. Res. Lett. 2021, 48, e2020GL091008. [Google Scholar] [CrossRef]
- Allmendinger, R.W.; Reilinger, R.; Loveless, J. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 2007, 26, TC3013. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.A.; Wernicke, B.P.; Niemi, N.A.; Friedrich, A.M.; Davis, J.L. Contemporary strain rates in the northern Basin and Range province from GPS data. Tectonics 2003, 22, TC001355. [Google Scholar] [CrossRef]
- Ward, S.N. Methods for evaluating earthquake potential and likelihood in and around California. Seismol. Res. Lett. 2007, 78, 121–133. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E.C. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosystems 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Zhou, Q. Kinematic analysis of the Ordos Block and surrounding area based on GPS data: An initiative–passive vortex structure model. Arab. J. Geosci. 2018, 11, 627. [Google Scholar] [CrossRef]
- Rui, X.; Stamps, D.S. A geodetic strain rate and tectonic velocity model for China. Geochem. Geophys. Geosystems 2019, 20, 1280–1297. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; El-Fiky, G.; Oware, E. Crustal strains in the Japanese islands as deduced from dense GPS array. Geophys. Res. Lett. 1998, 25, 3445–3448. [Google Scholar] [CrossRef]
- Kahle, H.G.; Cocard, M.; Peter, Y.; Geiger, A.; Reilinger, R.; McClusky, S.; King, R.; Barka, A.; Veis, G. The GPS strain rate field in the Aegean Sea and western Anatolia. Geophys. Res. Lett. 1999, 26, 2513–2516. [Google Scholar] [CrossRef]
- Calais, E.; Galisson, L.; Stephan, J.; Delteil, J.; Deverchere, J.; Larroque, C.; Mercier de Lepinay, B.; Popoff, M.; Sosson, M. Crustal strain in the Southern Alps, France, 1948–1998. Tectonophysics 2000, 319, 1–17. [Google Scholar] [CrossRef]
- Holt, W.; Chamot-Rooke, N.; Pichon, X.L.; Haines, A.J.; Shen-Tu, B.; Ren, J. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. Geophys. Res. 2000, 105, 19185–19210. [Google Scholar] [CrossRef]
- Henry, P.; Mazzotti, S.; Pichon, L. Transient and permanent deformation of central Japan estimated by GPS: 1. Interseismic loading and subduction kinematics. Earth Planet. Sci. Lett. 2001, 184, 443–453. [Google Scholar] [CrossRef]
- Savage, J.C.; Gan, W.; Svarc, J.L. Strain accumulation and rotation in the Eastern California Shear Zone. J. Geophys. Res. 2001, 106, 21995–22007. [Google Scholar] [CrossRef]
- Mazzotti, S.; James, T.S.; Henton, J.; Adams, J. GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: The Saint Lawrence valley example. J. Geophys. Res. 2005, 110, B11301. [Google Scholar] [CrossRef] [Green Version]
- Lukhnev, A.V.; San’kov, V.A.; Miroshnichenko, A.I.; Ashurkov, S.V.; Calais, E. GPS rotation and strain rates in the Baikal–Mongolia region. Russ. Geol. Geophys. 2010, 51, 785–793. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, M.; Gan, W.; Zhang, Z. Contemporary tectonic strain rate field of Chinese Continent and its geodynamic implications. Earth Sci. Front. 2003, 10, 93–100. [Google Scholar]
- Jiang, Z.; Ma, Z.; Zhang, X.; Wang, Q.; Wang, S. Horizontal strain field and tectonic deformation of the China Mainland inferred from GPS measurements. Chin. J. Geophys. 2003, 46, 352–358. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Zhang, J.; Huang, C.; Zhu, W.; Wang, W.; Guo, L.; Zhang, Z.; Yang, C. Horizontal strain field in the Chinese mainland and its surrounding areas. Chin. J. Geophys. 2004, 47, 245–257. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112, B08416. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Hao, M.; Li, Y.; Wang, W.; Qin, S.; Li, C. Present-day crustal movement and strain of the surrounding area of Ordos Block derived from repeated GPS observations. Chin. J. Geophys. 2016, 59, 3646–3661, (In Chinese with an English abstract). [Google Scholar]
- Middleton, T.A.; Parsons, B.; Walker, R.T. Comparison of seismic and geodetic strain rates at the margins of the Ordos Plateau, northern China. Geophys. J. Int. 2018, 212, 988–1009. [Google Scholar] [CrossRef]
- Shi, W.; Dong, S.; Hu, J. Neotectonics around the Ordos Block, North China: A review and new insights. Earth Sci. Rev. 2020, 200, 102969. [Google Scholar] [CrossRef]
- The research group on “Active fault system around Ordos massif”; State Seimological Bereau. Active Fault System around Ordos Massif; Seimological Press: Beijing, China, 1988. [Google Scholar]
- Wang, J. A study on the tectonics of the Weihe river graben. Geol. Rev. 1984, 30, 217–223. [Google Scholar]
- Rao, G.; Lin, A.; Yan, B. Paleoseismic study on active normal faults in the southeastern Weihe Graben, central China. J. Asian Earth Sci. 2015, 114, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.; Chen, P.; Hu, J.; Yu, Y.; Qiu, J. Timing of Holocene paleo-earthquakes along the Langshan Piedmont Fault in the western Hetao Graben, North China: Implications for seismic risk. Tectonophysics 2016, 677, 115–124. [Google Scholar] [CrossRef]
- Deutsch, C.V.; Journel, A.G. GSLIB: Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity, 4th ed.; Cambridge University Press: Dover, UK; Cambridge University Press: Mineola, NY, USA, 1944. [Google Scholar]
- Turcotte, D.L.; Schubert, D. Geodynamics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hu, X.; Zang, A.; Heidbach, O.; Cui, X.; Xie, F.; Chen, J. Crustal stress pattern in china and its adjacent areas. J. Asian Earth Sci. 2017, 149, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Lei, Q.Y.; Chai, C.Z.; Du, P.; Yu, J.X.; Wang, Y.; Xie, X.F. The seismogenic structure of the M8. 0 Pingluo earthquake in 1739. Seismol. Geol. 2015, 37, 413–429, (In Chinese with an English abstract). [Google Scholar]
- Qin, B.; Yan, W. Study on the cause of the 1695 M8 Linfen great earthquake. J. Catastrophol. 1992, 7, 14–18, (In Chinese with an English abstract). [Google Scholar]
- Qi, Y.; Lu, G.; Sun, L.; Fang, S.; Wang, X.; Feng, X.; Diao, G. Seismogenic Fault of the 1303 Hongdong M8 Earthquake in Shanxi Province. Earthquake 2017, 31, 148–157, (In Chinese with an English abstract). [Google Scholar]
- Ma, J.; Feng, X.J.; Li, G.Y.; Li, X.; Zhang, Y. The coseismic vertical displacements of surface rupture zone of the 1556 Huaxian earthquake. Seismol. Geol. 2016, 38, 22–30. [Google Scholar]
- Su, X.; Yao, L.; Wu, W.; Meng, G.; Su, L.; Xiong, R.; Hong, S. Crustal deformation on the northeastern margin of the Tibetan plateau from continuous GPS observations. Remote Sens. 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhang, P.; Wu, C.; Li, Z.; Ge, W.; Wang, W.; Wang, Y. basic characteristics of active tectonics and associated geodynamic processes in continental china. J. Geomech. 2019, 25, 699–721, (In Chinese with an English abstract). [Google Scholar]
- Cacciola, M.; Pellicanò, D.; Megali, G.; Lay-Ekuakille, A.; Versaci, M.; Morabito, F.C. Aspects about air pollution prediction on urban environment. In Proceedings of the 4th IMEKO TC19 Symposium on Environmental Instrumentation and Measurements 2013: Protection Environment, Climate Changes and Pollution Control, Lecce, Italy, 3–4 June 2013; International Measurement Confederation (IMEKO): Budapest, Hungary, 2013; pp. 15–20. [Google Scholar]
- Shen, Z.K.; Jackson, D.D.; Kagan, Y.Y. Implications of geodetic strain rate for future earthquakes, with a five-year forecast of M5 earthquakes in Southern California. Seismol. Res. Lett. 2007, 78, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Segall, P. Earthquake and Volcano Deformation; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Bird, P.; Kreemer, C.; Holt, W.E. A long-term forecast of shallow seismicity based on the Global Strain Rate Map. Seismol. Res. Lett. 2010, 81, 184–194. [Google Scholar] [CrossRef]
- Bird, P.; Kreemer, C. Revised tectonic forecast of global shallow seismicity based on version 2.1 of the Global Strain Rate Map. Bull. Seismol. Soc. Am. 2015, 105, 152–166. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Inter. 2011, 184, 160–171. [Google Scholar] [CrossRef]
- Riguzzi, F.; Crespi, M.; Devoti, R.; Doglioni, C.; Pietrantonio, G.; Pisani, A.R. Geodetic strain rate and earthquake size: New clues for seismic hazard studies. Phys. Earth Planet. Inter. 2012, 206, 67–75. [Google Scholar] [CrossRef]
- Guo, Z.; Qin, B.; Xu, W.; Tang, Q. Preliminary study on a model for the development of the focus of an earthquake. Acta Geophys. Sin. 1973, 16, 43–48, (In Chinese with an English abstract). [Google Scholar]
- Zhu, S.; Zhang, P. Numeric Modeling of the Strain Accumulation and Release of the 2008 Wenchuan, Sichuan, China, EarthquakeNumeric Modeling of the Strain Accumulation and Release of the 2008 Wenchuan, China, Earthquake. Bull. Seismol. Soc. Am. 2010, 100, 2825–2839. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, P. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan Earthquake. Tectonophysics 2013, 584, 64–80. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, P.; Zheng, W.; Yu, Z.; Lei, Q.; Yang, H.; Jinfeng, L.; Gong, H. Paleoseismic observations along the Langshan range-front fault, Hetao Basin, China: Tectonic and seismic implications. Tectonophysics 2018, 730, 63–80. [Google Scholar] [CrossRef]
- Xu, X.; Deng, Q. The features of late quaternary activity of the piedmont fault of Mt. Huoshan, Shanxi Province and 1303 Hongdong earthquake (Ms = 8). Seismol. Geol. 1990, 12, 21–32, (In Chinese with an English abstract). [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S. Strain-Rates from GPS Measurements in the Ordos Block, China: Implications for Geodynamics and Seismic Hazards. Remote Sens. 2022, 14, 779. https://doi.org/10.3390/rs14030779
Zhu S. Strain-Rates from GPS Measurements in the Ordos Block, China: Implications for Geodynamics and Seismic Hazards. Remote Sensing. 2022; 14(3):779. https://doi.org/10.3390/rs14030779
Chicago/Turabian StyleZhu, Shoubiao. 2022. "Strain-Rates from GPS Measurements in the Ordos Block, China: Implications for Geodynamics and Seismic Hazards" Remote Sensing 14, no. 3: 779. https://doi.org/10.3390/rs14030779
APA StyleZhu, S. (2022). Strain-Rates from GPS Measurements in the Ordos Block, China: Implications for Geodynamics and Seismic Hazards. Remote Sensing, 14(3), 779. https://doi.org/10.3390/rs14030779