Remote Sensing to Characterize River Floodplain Structure and Function
Abstract
:1. Introduction
2. Study Area
3. Remote Sensing Acquisition
3.1. Airborne Light Detection and Ranging
3.2. Satellite Multispectral Imagery
3.3. Airborne Hyperspectral Imagery
3.4. Airborne Ultra-High Resolution Multispectral Imagery
3.5. Airborne Thermanl Imagery
4. Field Measures and Data Classification
4.1. River Hydraulics—Depth and Flow Velocity
4.2. Surface Water–Ground Water Exchange and Groundwater Residence
4.3. Water Temperatures
4.4. Periphyton and Chlorophyll
4.5. Riparian Vegetation
5. Results and Discussion
5.1. LIDAR Bare Earth Model
5.2. Aquatic Habitat Defined by Flow Velocity and Water Depth
5.3. Aquatic Habitat Classification
5.4. Ground Water–Surface Water Interaction, Water Temperature, and Periphyton
5.5. Classification of Vegetation and Riparian Patches
6. Conclusions
- We have shown that linking of Quickbird satellite imagery (multispectral at a 2.4 m spatial resolution and panchromatic at a 0.6 m spatial resolution) with airborne LIDAR (to be employed for measuring river depth and velocity) and the detailed determination and quantification of aquatic habitats results in an extremely high resolution of river hydraulics.
- The coupling of remote sensing data permits high resolution classification and modeling based on the direct relationship of spectral reflectance to measured depth and velocity. Because this approach is not dependent upon resolving complex flow algorithms that poorly resemble the true complexity of river hydraulics, this approach provides the researcher with subtle habitat characteristics at scales used by aquatic organisms, especially migratory fish.
- Hyperspectral imaging, focusing on channel shorelines, coupled with thermal imaging and detailed temperature and naturally occurring radon tracer data provides important insight into groundwater–surface water interactions. When integrated, these data illustrate sites of potential nutrient upwelling from groundwater discharging into shallow channel shorelines and springs, including diverse and complex aquatic habitats. These data reveal the spatial complexity of aquatic temperature regimes across these habitats and locations where “hot-spots” of epiphytic algal growth affect river primary and secondary productivity and support of floodplain biodiversity.
- The coupling of satellite multispectral imaging, airborne hyperspectral imaging, and LIDAR bare earth and vegetation DEMs permits the identification of floodplain vegetation across serial stages from regeneration through old growth. These data allow the resolution of floodplain forest species and measure the topography, forest canopy height, and complex structure of the vegetation (e.g., differentiation of dominant tree species by canopy height and age class). This also facilitates answers to more complex questions related to spatial patterns of vegetation development, the incorporation of large wood into the river channel, and the distribution and abundance of main channel and off-channel linkages of aquatic and terrestrial habitats.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naiman, R.J.; Decamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.V. An expansive perspective of riverine landscapes: Pattern and process across scales. GAIA-Ecol. Perspect. Sci. Soc. 1997, 6, 52–60. [Google Scholar] [CrossRef]
- Hauer, F.R.; Locke, H.; Dreitz, V.J.; Hebblewhite, M.; Lowe, W.H.; Muhlfeld, C.C.; Nelson, C.R.; Proctor, M.F.; Rood, S.B. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Sci. Adv. 2016, 2, e1600026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Tockner, K.; Pusch, M.; Borchardt, D.; Lorang, M.S. Multiple stressors in coupled river-floodplain ecosystems. Freshw. Biol. 2010, 55, 135–151. [Google Scholar] [CrossRef]
- Likens, G.E.; Bormann, F.H. Linkages between terrestrial and aquatic ecosystems. BioScience 1974, 24, 447–456. [Google Scholar] [CrossRef]
- Stanford, J.A.; Lorang, M.S.; Hauer, F.R. The Shifting Habitat Mosaic of River Ecosystems. Verh. Int. Ver. Theor. Angew. Limnol. 2005, 29, 123–136. [Google Scholar] [CrossRef]
- Lorang, M.S.; Hauer, F.R. Fluvial Geomorphic Processes. In Methods in Stream Ecology—Volume 1: Ecosystem Structure, 3rd ed.; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press/Elsevier: New York, NY, USA, 2017; pp. 89–107. [Google Scholar]
- Stanford, J.A.; Ward, J.V. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor. J. N. Am. Benthol. Soc. 1993, 12, 48–60. [Google Scholar] [CrossRef]
- Woessner, W.W. Hyporheic Zones. In Methods in Stream Ecology—Volume 1: Ecosystem Structure, 3rd ed.; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press/Elsevier: New York, NY, USA, 2017; pp. 129–157. [Google Scholar]
- Brunke, M.; Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshw. Biol. 1997, 37, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, J.M.; Rood, S.B. Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands 1998, 18, 634–645. [Google Scholar] [CrossRef]
- Kleindl, W.J.; Rains, M.C.; Marshall, L.A.; Hauer, F.R. Fire and flood expand the floodplain shifting habitat mosaic concept. Freshw. Sci. 2015, 34, 1366–1382. [Google Scholar] [CrossRef] [Green Version]
- Peipoch, M.; Brauns, M.; Hauer, F.R.; Weitere, M.; Valett, H.M. Ecological simplification: Influences on riverscape complexity. BioScience 2015, 65, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Durand, M.; Gleason, C.; Garambois, P.A.; Bjerklie, D.; Smith, L.; Roux, H.; Rodriguez, E.; Bates, P.D.; Pavelsky, T.M.; Monnier, J. An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope. Water Resour. Res. 2016, 52, 4527–4549. [Google Scholar] [CrossRef] [Green Version]
- Hubbart, J.A.; Kellner, E.; Kinder, P.; Stephan, K. Challenges in aquatic physical habitat assessment: Improving conservation and restoration decisions for contemporary watersheds. Challenges 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Frechette, D.M.; Dugdale, S.; Dodson, J.; Bergeron, N. Understanding summertime thermal refuge 1033 use by adult Atlantic salmon using remote sensing, river temperature monitoring, and acoustic telemetry. Can. J. Fish. Aquat. Sci. 2018, 75, 1999–2010. [Google Scholar] [CrossRef]
- Kasvi, E.; Salmela, J.; Lotsari, E.; Kumpula, T.; Lane, S. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology 2019, 333, 180–197. [Google Scholar] [CrossRef]
- Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [Google Scholar] [CrossRef]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Processes Landf. 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Hankin, D.G.; Reeves, G.H. Estimating total fish abundance and total habitat area in small streams based on visual estimation methods. Can. J. Fish. Aquat. Sci. 1988, 45, 834–844. [Google Scholar] [CrossRef]
- Roper, B.B.; Scarnecchia, D.L. Observer variability in classifying habitat types in stream surveys. N. Am. J. Fish. Manag. 1995, 15, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Thompson, W.L. Hankin and Reeves’ Approach to Estimating Fish Abundance in Small Streams: Limitations and Alternatives. Trans. Am. Fish. Soc. 2003, 132, 69–75. [Google Scholar] [CrossRef]
- Gore, J.A.; Judy, R.D., Jr. Predictive models of benthic macroinvertebrate density for use in instream flow studies and regulated flow management. Can. J. Fish. Aquat. Sci. 1981, 38, 1363–1370. [Google Scholar] [CrossRef]
- Gallagher, S.P.; Gard, M.F. Relationship between chinook salmon (Oncorhynchus tshawytscha) redd densities and PHABSIM-predicted habitat in the Merced and Lower American rivers, California. Can. J. Fish. Aquat. Sci. 1999, 56, 570–577. [Google Scholar] [CrossRef]
- Spence, R.; Hickley, P. The use of PHABSIM in the management of water resources and fisheries in England and Wales. Ecol. Eng. 2000, 16, 153–158. [Google Scholar] [CrossRef]
- Shirvell, C.S. Ability of PHABSIM to predict chinook salmon spawning habitat. Regul. Rivers Res. Manag. 1989, 3, 277–289. [Google Scholar] [CrossRef]
- Bourgeois, G.; Cunjak, R.A.; Caissie, D. A spatial and temporal evaluation of PHABSIM in relation to measured density of juvenile Atlantic salmon in a small stream. N. Am. J. Fish. Manag. 1998, 16, 154–166. [Google Scholar] [CrossRef]
- Put, W.; Pasture, P. Don’t throw out the baby (PHABSIM) with the bathwater: Bringing scientific credibility to use of hydraulic habitat models, specifically PHABSIM. Future of Salmon in the Face of Change. Fisheries 2017, 146, 493–560. [Google Scholar]
- Leclerc, M.; Boudreault, A.; Bechara, J.A.; Corfa, G. Two-dimensional hydrodynamic modeling: A neglected tool in the instream flow incremental methodology. Trans. Am. Fish. Soc. 1995, 124, 645–662. [Google Scholar] [CrossRef]
- Ghanem, A.; Steffler, P.; Hicks, F.; Katopodis, C. 2-D hydraulic simulation of physical conditions in flowing streams. Regul. Rivers Res. Manag. 1996, 12, 185–200. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Larsen, E.W.; Williams, J.G. Measuring and modeling the hydraulic environment for assessing instream flows. N. Am. J. Fish. Manag. 2000, 20, 1016–1028. [Google Scholar] [CrossRef]
- Lorang, M.S.; Tonolla, D. Combining active and passive hydroacoustic techniques during flood events for rapid spatial mapping of bedload transport patterns in gravel-bed rivers. Fundam. Appl. Limnol. 2014, 184, 231–246. [Google Scholar] [CrossRef]
- Marotz, B.; Lorang, M.S. Pallid sturgeon larvae: The drift dispersion hypothesis. J. Appl. Ichthyol. 2018, 34, 373–381. [Google Scholar] [CrossRef]
- Mejia, F.H.; Torgersen, C.E.; Berntsen, E.K.; Maroney, J.R.; Connor, J.M.; Fullerton, A.H.; Ebersole, J.L.; Lorang, M.S. Longitudinal, Lateral, Vertical, and Temporal Thermal Heterogeneity in a Large Impounded River: Implications for Cold-Water Refuges. Remote Sens. 2020, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.F. Integrating GIS and remote sensing for vegetation analysis and modeling: Methodological issues. J. Veg. Sci. 1994, 5, 615–626. [Google Scholar] [CrossRef]
- Wulder, M.A.; Franklin, S.E.; White, J.C.; Linke, J.; Magnussen, S. An accuracy assessment framework for large-area land cover classification products derived from medium-resolution satellite data. Int. J. Remote Sens. 2006, 27, 663–683. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Cochrane, M.A. Using vegetation reflectance variability for species level classification of hyperspectral data. Int. J. Remote Sens. 2000, 21, 2075–2087. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Underwood, E.; Ustin, S.; DiPietro, D. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150–161. [Google Scholar] [CrossRef]
- Hirano, A.; Madden, M.; Welch, R. Hyperspectral image data for mapping wetland vegetation. Wetlands 2003, 23, 436–448. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Rugenski, A.T.; Minshall, G.W.; Hauer, F.R. Riparian Processes and Interactions. In Methods in Stream Ecology—Volume 2: Ecosystem Function, 3rd ed.; Lamberti, G.A., Hauer, F.R., Eds.; Academic Press/Elsevier: New York, NY, USA, 2017; pp. 83–111. [Google Scholar]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies. BioScience 2002, 52, 19–30. [Google Scholar] [CrossRef]
- McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [Google Scholar] [CrossRef] [Green Version]
- Tockner, K.; Lorang, M.S.; Stanford, J.A. River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Res. Appl. 2010, 26, 76–86. [Google Scholar] [CrossRef]
- Whited, D.C.; Lorang, M.S.; Harner, M.J.; Stanford, J.A.; Hauer, F.R.; Kimball, J.S. Climate, hydrologic disturbance, and succession: Drivers of floodplain pattern. Ecology 2007, 88, 940–953. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with LIDAR: Local filtering with a canopy-height based variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Passive remote-sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Winterbottom, S.J.; Gilvear, D.J. Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagert and aerial photography. Regul. Rivers Res. Manag. 1997, 13, 489–499. [Google Scholar] [CrossRef]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Whited, D.C.; Stanford, J.A.; Kimball, J.S. Application of airborne multi-spectral digital imagery to characterize riverine habitats at different base flows. River Res. Appl. 2002, 18, 583–594. [Google Scholar] [CrossRef]
- Whited, D.C.; Stanford, J.A.; Kimball, J.S. Application of airborne multi-spectral digital imagery to characterize the riverine habitat. Verh. Int. Ver. Theor. Angew. Limnol. 2003, 28, 1373–1380. [Google Scholar] [CrossRef]
- Lorang, M.S.; Whited, D.C.; Hauer, F.R.; Kimball, J.S.; Stanford, J.A. Using airborne multispectral imagery to evaluate geomorphic work across floodplains of gravel-bed rivers. Ecol. Appl. 2005, 15, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.N.; Wood, D.F. Mechanism of Radon Release in Rock Matrices and Entry into Groundwaters; Bath University of Technology: Bath, UK, 1972. [Google Scholar]
- Moore, W.S. Mechanism of transport of U-Th series radioisotopes from solids into ground water. Geochim. Cosmochim. Acta 1984, 48, 395–399. [Google Scholar]
- Hoehn, E.; von Gunten, H.R. Radon in groundwater—A tool to assess infiltration from surface waters to aquifers. Water Resour. Res. 1989, 25, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Burnett, W.C.; Kim, G.; Lane-Smith, D. Use of a continuous radon monitor for assessment of radon in coastal ocean waters. J. Radioanal. Nucl. Chem. 2001, 249, 167–172. [Google Scholar]
- Lorang, M.S.; Hauer, F.R.; Whited, D.C.; Matson, P.L. Using airborne remote-sensing imagery to assess flow releases from a dam in order to maximize re-naturalization of a regulated gravel-bed river. In The Challenges of Dam Removal and River Restoration. Geological Society of America Reviews in Engineering Geology; De Graff, J.V., Evans, J.E., Eds.; The Geological Society of America, Inc.: Boulder, CO, USA, 2013; Volume 21, pp. 117–132. [Google Scholar]
- Baxter, C.V.; Hauer, F.R. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 2000, 57, 1470–1481. [Google Scholar] [CrossRef]
- Valett, H.M.; Hauer, F.R.; Stanford, J.A. Landscape influences on ecosystem function: Local and routing control of oxygen dynamics in a floodplain aquifer. Ecosystems 2014, 17, 195–211. [Google Scholar] [CrossRef]
- Wyatt, K.H.; Hauer, F.R.; Pessoney, G.F. Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia 2008, 607, 151–161. [Google Scholar] [CrossRef]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; Van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauer, F.R.; Lorang, M.S.; Gonser, T. Remote Sensing to Characterize River Floodplain Structure and Function. Remote Sens. 2022, 14, 1132. https://doi.org/10.3390/rs14051132
Hauer FR, Lorang MS, Gonser T. Remote Sensing to Characterize River Floodplain Structure and Function. Remote Sensing. 2022; 14(5):1132. https://doi.org/10.3390/rs14051132
Chicago/Turabian StyleHauer, F. Richard, Mark S. Lorang, and Tom Gonser. 2022. "Remote Sensing to Characterize River Floodplain Structure and Function" Remote Sensing 14, no. 5: 1132. https://doi.org/10.3390/rs14051132
APA StyleHauer, F. R., Lorang, M. S., & Gonser, T. (2022). Remote Sensing to Characterize River Floodplain Structure and Function. Remote Sensing, 14(5), 1132. https://doi.org/10.3390/rs14051132