Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. HF Radar Wave Observations
2.3. Mediterranean Wave Model (MWM)
2.4. MIKE 21 Spectral Waves (SW)
2.5. Wind Data
2.6. Data Analysis Methods
3. Results
3.1. Model and HFr Preliminary Assessment
3.2. Extreme Events Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Androulidakis, Y.S.; Kombiadou, K.D.; Makris, C.V.; Baltikas, V.N.; Krestenitis, Y.N. Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dyn. Atmos. Ocean. 2015, 71, 56–82. [Google Scholar] [CrossRef]
- Martzikos, N.T.; Prinos, P.E.; Memos, C.D.; Tsoukala, V.K. Statistical analysis of Mediterranean coastal storms. Oceanologia 2021, 63, 133–148. [Google Scholar] [CrossRef]
- Conte, D.; Lionello, P. Storm Surge Distribution Along the Mediterranean Coast: Characteristics and Evolution. Procedia Soc. Behav. Sci. 2014, 120, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Vannucchi, V.; Taddei, S.; Capecchi, V.; Bendoni, M.; Brandini, C. Dynamical Downscaling of ERA5 Data on the North-Western Mediterranean Sea: From Atmosphere to High-Resolution Coastal Wave Climate. J. Mar. Sci. Eng. 2021, 9, 208. [Google Scholar] [CrossRef]
- Wyatt, L.R.; Green, J.J.; Middleditch, A. HF radar data quality requirements for wave measurement. Coast. Eng. 2011, 58, 327–336. [Google Scholar] [CrossRef]
- Lipa, B.; Barrick, D.; Alonso-Martirena, A.; Fernandes, M.; Ferrer, M.I.; Nyden, B. Brahan Project High Frequency Radar Ocean Measurements: Currents, Winds, Waves and Their Interactions. Remote Sens. 2014, 6, 12094–12117. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.; Conley, D.C. Comparison of HF Radar Fields of Directional Wave Spectra Against In Situ Measurements at Multiple Locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, L.R. Wave and tidal power measurement using HF radar. Int. Mar. Energy J. 2018, 1, 123–127. [Google Scholar] [CrossRef]
- Saviano, S.; Kalampokis, A.; Zambianchi, E.; Uttieri, M. A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea). J. Oper. Oceanogr. 2019, 12, 1–15. [Google Scholar] [CrossRef]
- Lorente, P.; Mercader, A.B.; Piedracoba, S.; Perez-Munuzuri, V.; Montero, P.; Sotillo, M.; Álvarez-Fanjul, E. Long-term skill assessment of SeaSonde radar-derived wave parameters in the Galician coast (NW Spain). Int. J. Remote Sens. 2019, 40, 9208–9236. [Google Scholar] [CrossRef]
- Saviano, S.; Cianelli, D.; Zambianchi, E.; Conversano, F.; Uttieri, M. An Integrated Reconstruction of the Multiannual Wave Pattern in the Gulf of Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea). J. Mar. Sci. Eng. 2020, 8, 372. [Google Scholar] [CrossRef]
- Basañez, A.; Lorente, P.; Montero, P.; Álvarez-Fanjul, E.; Pérez-Muñuzuri, V. Quality Assessment and practical interpretation of the wave parameters estimated by HF Radars in NW Spain. Remote Sens. 2020, 12, 598. [Google Scholar] [CrossRef] [Green Version]
- Long, R.M.; Barrick, D.E.; Largier, J.L.; Garfield, N. Wave Observations from Central California: SeaSonde Systems and In SituWave Buoys. J. Sens. 2011, 2011, 728936. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, M.; Álvarez-Fanjul, E.; López, J.D. Comparison of CODAR SeaSonde HF Radar Operational Waves and Currents Measurements with Puertos Del Estado Buoys. Final Report of Puertos del Estado. 2006. Available online: http://www.codar.com/images/about/2006PDE_final_Report.pdf (accessed on 9 January 2021).
- Bué, I.; Semedo, Á.; Catalão, J. Evaluation of HF Radar Wave Measurements in Iberian Peninsula by Comparison with Satellite Altimetry and in Situ Wave Buoy Observations. Remote Sens. 2020, 12, 3623. [Google Scholar] [CrossRef]
- Orasi, A.; Picone, M.; Drago, A.; Capodici, F.; Gauci, A.; Nardone, G.; Inghilesi, R.; Azzopardi, J.; Galea, A.; Ciraolo, G. Inter-comparison of HF radar wave measurements in the Malta-Sicily Channel. In Proceedings of the IMEKO International Conference on Metrology for The Sea, Naples, Italy, 11–13 October 2017. [Google Scholar]
- Wyatt, L.R.; Green, J.J.; Gurgel, K.-W.; Borge, J.C.N.; Reichert, K.; Hessner, K.; Günther, H.; Rosenthal, W.; Saetra, O.; Reistad, M. Validation and intercomparisons of wave measurements and models during the EuroROSE experiments. Coast. Eng. 2003, 48, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Bidlot, J.-R.; Holmes, D.J.; Wittmann, P.A.; Lalbeharry, R.; Chen, H.S. Intercomparison of the Performance of Operational Ocean Wave Forecasting Systems with Buoy Data. Weather Forecast. 2002, 17, 287–310. [Google Scholar] [CrossRef]
- Saviano, S.; de Leo, F.; Besio, G.; Zambianchi, E.; Uttieri, M. HF Radar Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian Sea): Comparison with Hindcast Results at Different Scales. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Atan, R.; Goggins, J.; Harnett, M.; Nash, S.; Agostinho, P. Assessment of extreme wave height events in Galway Bay using High Frequency radar (CODAR) data. In Renewable Energies Offshore; CRC Press: Boca Raton, FL, USA, 2015; pp. 49–56. [Google Scholar]
- Lorente, P.; Sotillo, M.G.; Aouf, L.; Amo-Baladrón, A.; Barrera, E.; Dalphinet, A.; Toledano, C.; Rainaud, R.; de Alfonso, M.; Piedracoba, S.; et al. Extreme Wave Height Events in NW Spain: A Combined Multi-Sensor and Model Approach. Remote Sens. 2017, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.; Fernandes, C.; Barroqueiro, T.; Agostinho, P.; Martins, N.; Alonso-Martirena, A. Extreme wave height events in Algarve (Portugal): Comparison between HF radar systems and wave buoys. Proceedings of 5th Jornadas Engenharia Hidrográfica, Lisboa, Portugal, 19–21 June 2018; pp. 222–225. [Google Scholar]
- Fortelli, A.; Fedele, A.; de Natale, G.; Matano, F.; Sacchi, M.; Troise, C.; Somma, R. Analysis of Sea Storm Events in the Mediterranean Sea: The Case Study of 28 December 2020 Sea Storm in the Gulf of Naples, Italy. Appl. Sci. 2021, 11, 11460. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jimenez, J.A.; Mateo, J. A coastal storms intensity scale for the Catalan sea (NW Mediterranean). Nat. Hazards Earth Syst. Sci. 2011, 11, 2453–2462. [Google Scholar] [CrossRef] [Green Version]
- Harley, M. Coastal Storm Definition. In Coastal Storms; Wiley: Hoboken, NJ, USA, 2017; pp. 1–21. [Google Scholar]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Effects of storm clustering on beach/dune evolution. Mar. Geol. 2015, 370, 63–75. [Google Scholar] [CrossRef]
- Lin-Ye, J.; Garcia-Leon, M.; Gracia, V.; Sanchez-Arcilla, A. A multivariate statistical model of extreme events: An application to the Catalan coast. Coast. Eng. 2016, 117, 138–156. [Google Scholar] [CrossRef] [Green Version]
- Morucci, S.; Picone, M.; Nardone, G.; Arena, G. Tides and waves in the Central Mediterranean Sea. J. Oper. Oceanogr. 2016, 9, s10–s17. [Google Scholar] [CrossRef] [Green Version]
- Cianelli, D.; Uttieri, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Dynamics of a Very Special Mediterranean Coastal Area: The Gulf of Naples. In Mediterranean Ecosystems: Dynamics, Management and Conservation; Williams, G., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 129–150. [Google Scholar]
- Donatini, L.; Lupieri, G.; Contento, G.; Feudale, L.; Pedroncini, A.; Cusati, L.A.; Crosta, A. A high resolution wind&wave forecast model chain for the Mediterranean and Adriatic Sea. In Towards Green Marine Technology and Transport: Proceedings of the 16th International Conference of the International Maritime Association of the Mediterranean (IMAM2015), Pula, Croatia, 21–24 September 2015; Guedes Soares, C., Dejhalla, R., Pavletic, D., Eds.; University of Trieste: Trieste, Italy, 2015; Volume 1, pp. 859–866. [Google Scholar]
- Ascione, A.; Aucelli, P.P.; Cinque, A.; Di Paola, G.; Mattei, G.; Ruello, M.; Ermolli, E.R.; Santangelo, N.; Valente, E. Geomorphology of Naples and the Campi Flegrei: Human and natural landscapes in a restless land. J. Maps 2020, 17, 18–28. [Google Scholar] [CrossRef]
- Aiello, G.; Caccavale, M. From Siliciclastic to Bioclastic Deposits in the Gulf of Naples: New Highlights from Offshore Ischia and Procida–Pozzuoli Based on Sedimentological and Seismo-Stratigraphic Data. Quaternary 2021, 4, 44. [Google Scholar] [CrossRef]
- Mattei, G.; Di Luccio, D.; Benassai, G.; Anfuso, G.; Budillon, G.; Aucelli, P. Characteristics and coastal effects of a destructive marine storm in the Gulf of Naples (southern Italy). Nat. Hazards Earth Syst. Sci. 2021, 21, 3809–3825. [Google Scholar] [CrossRef]
- Aiello, G.; Sacchi, M. New morpho-bathymetric data on marine hazard in the offshore of Gulf of Naples (Southern Italy). Nat. Hazards 2022, 11, 2881–2908. [Google Scholar] [CrossRef]
- Mattei, G.; Rizzo, A.; Anfuso, G.; Aucelli, P.; Gracia, F. A tool for evaluating the archaeological heritage vulnerability to coastal processes: The case study of Naples Gulf (southern Italy). Ocean Coast. Manag. 2019, 179. [Google Scholar] [CrossRef]
- Falco, P.; Buonocore, B.; Cianelli, D.; de Luca, L.; Giordano, A.; Iermano, I.; Kalampokis, A.; Saviano, S.; Uttieri, M.; Zambardino, G.; et al. Dynamics and sea state in the Gulf of Naples: Potential use of high-frequency radar data in an operational oceanographic context. J. Oper. Oceanogr. 2016, 9, s33–s45. [Google Scholar] [CrossRef] [Green Version]
- Menna, M.; Mercatini, A.; Uttieri, M.; Buonocore, B.; Zambianchi, E. Wintertime transport processes in the Gulf of Naples in-vestigated by HF radar measurements of surface currents. Nuovo Cimento C 2007, 30, 605–622. [Google Scholar]
- Hatzaki, M.; Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Rudeva, I. Seasonal Aspects of an Objective Climatology of Anticyclones Affecting the Mediterranean. J. Clim. 2014, 27, 9272–9289. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1: 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA 595 Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, NOAA: Boulder, CO, USA, 2009. [Google Scholar] [CrossRef]
- Uttieri, M.; Cianelli, D.; Nardelli, B.B.; Buonocore, B.; Falco, P.; Colella, S.; Zambianchi, E. Multiplatform observation of the surface circulation in the Gulf of Naples (Southern Tyrrhenian Sea). Ocean Dyn. 2011, 61, 779–796. [Google Scholar] [CrossRef]
- Cianelli, D.; Falco, P.; Iermano, I.; Mozzillo, P.; Uttieri, M.; Buonocore, B.; Zambardino, G.; Zambianchi, E. Inshore/offshore water exchange in the Gulf of Naples. J. Mar. Syst. 2015, 145, 37–52. [Google Scholar] [CrossRef]
- Cianelli, D.; Uttieri, M.; Guida, R.; Menna, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Land-based remote sensing of coastal basins: Use of a HF radar to investigate surface dynamics and transport processes in the Gulf of Naples. In Remote Sensing: Techniques, Applications and Technologies; Alcântara, E., Ed.; Nova Science Publishers: New York, NY, USA, 2013; pp. 1–30. ISBN 9781624171451. [Google Scholar]
- Saviano, S.; Esposito, G.; Di Lemma, R.; de Ruggiero, P.; Zambianchi, E.; Pierini, S.; Falco, P.; Buonocore, B.; Cianelli, D.; Uttieri, M. Wind Direction Data from a Coastal HF Radar System in the Gulf of Naples (Central Mediterranean Sea). Remote Sens. 2021, 13, 1333. [Google Scholar] [CrossRef]
- Lipa, B.J.; Nyden, B. Directional wave information from the SeaSonde. IEEE J. Ocean Eng. 2005, 30, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Lipa, B.; Daugharty, M.; Fernandes, M.; Barrick, D.; AlonsoMartirena, A.; Roarty, H.; Dicopoulos, J.; Whelan, C. Developments in compact HF-radar ocean wave measurement. In Advances in Sensors: Reviews; Yurish, S.Y., Ed.; IFSA Publishing: Barcelona, Spain, 2018; Volume 5, pp. 469–495. [Google Scholar]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Michalakes, J.; Chen, S.; Dudhia, J.; Hart, L.; Klemp, J.; Middlecoff, J.; Skamarock, W. Development of a Next Generation Regional Weather Research and Forecast Model. Developments in Teracomputing. In Developments in Teracomputing: Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology; Reading, UK, 13–17 November 2000, Zwieflhofer, W., Kreitz, N., Eds.; World Scientific: Singapore, 2001; pp. 269–276. [Google Scholar]
- Sorensen, O.R.; Kofoed-Hansen, H.; Rugbjerg, M.; Sorensen, L.S. A Third Generation Spectral Wave Model Using an Unstructured Finite Volume Technique. In Proceedings of the 29th International Conference of Coastal Engineering, Lisbon, Portugal, 19–24 September 2004. [Google Scholar]
- Anton, I.A.; Rusu, L. Nearshore Wave Dynamics at Mangalia Beach Simulated by Spectral Models. J. Mar. Sci. Eng. 2019, 7, 206. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, R.B.; Gonçalves, M.; Guedes Soares, C. Comparing the Performance of Spectral Wave Models for Coastal Areas. J. Coast. Res. 2017, 33, 331–346. [Google Scholar] [CrossRef]
- DHI. MIKE 21 SW Spectral Waves FM Module User Guide; DHI: Copenhagen, Denmark, 2012. [Google Scholar]
- Komen, G.J.; Cavaleri, L.; Doneland, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambrigde University Press: Cambridge, UK, 1994; p. 554. [Google Scholar]
- Young, I.R. Wind generated ocean waves. In Elsevier Ocean Engineering Book Series, Volume 2; Bhattacharyya, R., McCormick, M.E., Eds.; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Version 4 NCAR Tech, Note NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Beuvier, J.; Lebeaupin Brossier, C.; Béranger, K.; Arsouze, T.; Bourdallé-Badie, R.; Deltel, C.; Somot, S. MED12, oceanic component for the modeling of the regional Mediterranean Earth System. Mercator Ocean. Q. Newsl. 2012, 46, 60–66. [Google Scholar]
- Wiehle, S.; Pleskachevsky, A. Bathymetry derived from sentinel-1 synthetic aperture radar data. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; VDE: Frankfurt am Mein, Germany, 2018; pp. 1–4. [Google Scholar]
- Lavidas, G.; Venugopal, V. Application of numerical wave models at European coastlines: A review. Renew. Sustain. Energy Rev. 2018, 92, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Hanna, S.; Heinold, D. Development and Application of a Simple Method for Evaluating Air Quality; Technical Report; American Petroleum Institute, Health and Environmental Affairs Department: Washington, DC, USA, 1985. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- De Swart, R.; Ribas, F.; Calvete, D.; Kroon, A.; Orfila, A. Optimal estimations of directional wave conditions for nearshore field studies. Cont. Shelf Res. 2020, 196, 104071. [Google Scholar] [CrossRef]
- Roarty, H.; Cook, T.; Hazard, L.; George, D.; Harlan, J.; Cosoli, S.; Wyatt, L.; Alvarez Fanjul, E.; Terrill, E.; Otero, M.; et al. The Global High Frequency Radar Network. Front. Mar. Sci. 2019, 6, 164. [Google Scholar] [CrossRef]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF Radar Activity in European Coastal Seas: Next Steps toward a Pan-European HF Radar Network. Front. Mar. Sci. 2017, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Ludeno, G.; Uttieri, M. Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring. ” J. Mar. Sci. Eng. 2020, 8, 560. [Google Scholar] [CrossRef]
- Lopez, G.; Conley, D.C.; Greaves, D. Calibration, Validation, and Analysis of an Empirical Algorithm for the Retrieval of Wave Spectra from HF Radar Sea Echo. J. Atmos. Ocean. Technol. 2016, 33, 245–261. [Google Scholar] [CrossRef]
- Roarty, H.; Evans, C.; Glenn, S.; Zhou, H. Evaluation of algorithms for wave height measurements with High Frequency Ra-dar. In Proceedings of the IEEE/OES Current, Waves and Turbulence Measurements (CWTM), St. Peterburg, FL, USA, 2–6 March 2015; pp. 1–4. [Google Scholar]
- Piscopo, V.; Rossi, G.B.; Crenna, F.; Gaglione, S.; Scamardella, A.; Uttieri, M.; Zambianchi, E. Measurement of Sea Waves. In Measurement for the Sea; Springer: Berlin/Heidelberg, Germany, 2022; pp. 157–179. [Google Scholar]
- Ferla, M.; Nardone, G.; Orasi, A.; Picone, M.; Falco, P.; Zambianchi, E. Sea Monitoring Networks. In Measurement for the Sea; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2022; pp. 211–235. [Google Scholar]
- Rossi, G.B.; Cannata, A.; Iengo, A.; Migliaccio, M.; Nardone, G.; Piscopo, V.; Zambianchi, E. Measurement of Sea Waves. Sensors 2021, 22, 78. [Google Scholar] [CrossRef]
- Lorente, P.; Lin-Ye, J.; García-León, M.; Reyes, E.; Fernandes, M.; Sotillo, M.G.; Espino, M.; Ruiz, M.I.; Gracia, V.; Perez, S.; et al. On the Performance of High Frequency Radar in the Western Mediterranean During the Record-Breaking Storm Gloria. Front. Mar. Sci. 2021, 8, 205. [Google Scholar] [CrossRef]
- Hernandez-Lasheras, J.; Mourre, B.; Orfila, A.; Santana, A.; Reyes, E.; Tintoré, J. Evaluating high-frequency radar data assimilation impact in coastal ocean operational modelling. Ocean Sci. 2021, 17, 1157–1175. [Google Scholar] [CrossRef]
- Waters, J.; Wyatt, L.R.; Wolf, J.; Hines, A. Data assimilation of partitioned HF radar wave data into Wavewatch III. Ocean Model. 2013, 72, 17–31. [Google Scholar] [CrossRef]
- Hardman, R.L.; Wyatt, L.R. Inversion of HF Radar Doppler Spectra Using a Neural Network. J. Mar. Sci. Eng. 2019, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Cosoli, S. Implementation of the Listen-Before-Talk Mode for SeaSonde High-Frequency Ocean Radars. J. Mar. Sci. Eng. 2020, 8, 57. [Google Scholar] [CrossRef] [Green Version]
Year | Site | NRMSE | NBIAS | HH | |
---|---|---|---|---|---|
2008 | SORR-RC3 | 0.61 | 0.02 | −0.70 | 0.55 |
SORR-RC5 | 0.61 | 0.01 | −0.69 | 0.67 | |
SORR-RC7 | 0.64 | 0.01 | −0.67 | 0.63 | |
CAST-RC3 | 0.75 | 0.02 | −0.67 | 0.29 | |
CAST-RC5 | 0.56 | 0.02 | −0.68 | 0.55 | |
CAST-RC7 | 0.64 | 0.02 | −0.70 | 0.54 | |
PORT-RC3 | 0.78 | 0.01 | −0.61 | 0.37 | |
PORT-RC5 | 0.7 | 0.02 | −0.67 | 0.36 | |
PORT-RC7 | 0.76 | 0.02 | −0.65 | 0.33 | |
2009 | SORR-RC3 | 0.66 | 0.01 | −0.64 | 0.51 |
SORR-RC5 | 0.64 | 0.01 | −0.61 | 0.65 | |
SORR-RC7 | 0.58 | 0.01 | −0.60 | 0.66 | |
CAST-RC3 | 0.29 | 0.02 | −0.65 | 0.48 | |
CAST-RC5 | 0.49 | 0.01 | −0.64 | 0.54 | |
CAST-RC7 | 0.6 | 0.01 | −0.65 | 0.56 | |
PORT-RC3 | 0.66 | 0.01 | −0.52 | 0.44 | |
PORT-RC5 | 0.57 | 0.02 | −0.57 | 0.4 | |
PORT-RC7 | 0.62 | 0.03 | −0.54 | 0.39 | |
2010 | SORR-RC3 | 0.77 | 0.01 | −0.63 | 0.63 |
SORR-RC5 | 0.73 | 0.01 | −0.61 | 0.63 | |
SORR-RC7 | 0.7 | 0.01 | −0.60 | 0.62 | |
CAST-RC3 | 0.28 | 0.02 | −0.56 | 0.55 | |
CAST-RC5 | 0.63 | 0.01 | −0.56 | 0.55 | |
CAST-RC7 | 0.71 | 0.01 | −0.57 | 0.47 | |
PORT-RC3 | 0.8 | 0.01 | −0.43 | 0.42 | |
PORT-RC5 | 0.71 | 0.02 | −0.49 | 0.4 | |
PORT-RC7 | 0.74 | 0.03 | −0.45 | 0.4 | |
2011 | SORR-RC3 | 0.46 | 0.02 | −0.68 | 0.8 |
SORR-RC5 | 0.5 | 0.02 | −0.66 | 0.92 | |
SORR-RC7 | 0.44 | 0.02 | −0.66 | 0.93 | |
CAST-RC3 | - | - | - | - | |
CAST-RC5 | 0.39 | 0.02 | −0.60 | 0.73 | |
CAST-RC7 | 0.36 | 0.02 | −0.62 | 0.65 | |
PORT-RC3 | 0.69 | 0.01 | −0.57 | 0.8 | |
PORT-RC5 | 0.77 | 0.04 | −0.66 | 0.36 | |
PORT-RC7 | 0.62 | 0.06 | −0.60 | 0.4 | |
2012 | SORR-RC3 | 0.79 | 0.01 | −0.69 | 0.56 |
SORR-RC5 | 0.75 | 0.01 | −0.65 | 0.73 | |
SORR-RC7 | 0.71 | 0.01 | −0.65 | 0.72 | |
CAST-RC3 | 0.38 | 0.03 | −0.71 | 0.64 | |
CAST-RC5 | 0.7 | 0.01 | −0.73 | 0.63 | |
CAST-RC7 | 0.77 | 0.01 | −0.70 | 0.59 | |
PORT-RC3 | 0.85 | 0.01 | −0.49 | 0.38 | |
PORT-RC5 | 0.77 | 0.03 | −0.57 | 0.4 | |
PORT-RC7 | 0.75 | 0.03 | −0.55 | 0.42 |
Event Date | Duration (h) | Mean Wind Direction (°) | Mean Wind Velocity (m/s) | E SORR | E CAST | E PORT |
---|---|---|---|---|---|---|
04 December 2008–07 December 2008 | 81 | 200.8 | 5.6 | 1180 | 265.8 | 102.4 |
01 January 2009–03 January 2009 | 50 | 202.5 | 4.5 | 120.9 | 42.2 | 46.8 |
08 November 2010–10 November 2010 | 68 | 211.3 | 9.5 | 597.8 | 117.7 | 317.9 |
28 November 2012–30 November 2012 | 63 | 188.8 | 13.3 | 1290 | 812.1 | 422.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saviano, S.; Biancardi, A.A.; Uttieri, M.; Zambianchi, E.; Cusati, L.A.; Pedroncini, A.; Contento, G.; Cianelli, D. Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model. Remote Sens. 2022, 14, 1696. https://doi.org/10.3390/rs14071696
Saviano S, Biancardi AA, Uttieri M, Zambianchi E, Cusati LA, Pedroncini A, Contento G, Cianelli D. Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model. Remote Sensing. 2022; 14(7):1696. https://doi.org/10.3390/rs14071696
Chicago/Turabian StyleSaviano, Simona, Anastasia Angela Biancardi, Marco Uttieri, Enrico Zambianchi, Luis Alberto Cusati, Andrea Pedroncini, Giorgio Contento, and Daniela Cianelli. 2022. "Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model" Remote Sensing 14, no. 7: 1696. https://doi.org/10.3390/rs14071696
APA StyleSaviano, S., Biancardi, A. A., Uttieri, M., Zambianchi, E., Cusati, L. A., Pedroncini, A., Contento, G., & Cianelli, D. (2022). Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model. Remote Sensing, 14(7), 1696. https://doi.org/10.3390/rs14071696