Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Descriptions
2.1.1. Oyster River
2.1.2. Sooke Lake Watershed
2.1.3. Northwest Bay
2.1.4. Franklin River
2.2. Spatial Data
2.3. Spatial Data Processing
2.3.1. Pre-Harvest
2.3.2. Post-Harvest
2.4. Training Data from Plots at the OR, SWS and SWN Sites
2.5. Hybrid Model Development
2.6. Sources of Block-Level Data for Testing Hybrid Models
2.7. Hybrid Model Testing and Comparisons
3. Results
3.1. Variable Selection
3.2. Model Fitting and Expansion
3.3. Comparison of HB Model Estimates with Block-Level Data
3.3.1. Merchantable Volumes
3.3.2. Non-Merchantable Volumes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ninan, K.N.; Inoue, M. Valuing forest ecosystem services: What we know and what we ’don’t. Ecol. Econ. 2013, 93, 137–149. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natural Resources Canada. The State of Canada’s Forests; Annual Report 2019; Natural Resources Canada, Canadian Forest Service: Ottawa, ON, Canada, 2020; p. 88. Available online: https://cfs.nrcan.gc.ca/publications?id=40219&lang=en_CA (accessed on 15 October 2020).
- Nabuurs, G.J.; Masera, O.; Andrasko, K.; Benitez-Ponce, P.; Boer, R.; Dutschke, M.; Elsiddig, E.; Ford-Robertson, J.; Frumhoff, P.; Karjalainen, T.; et al. Chapter 9: Forestry. In Climate Change 2007: Mitigation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Trofymow, J.A.; Stinson, G.; Kurz, W.A. Derivation of a spatially explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island, BC. Forest Ecol. Manag. 2008, 256, 1677–1691. [Google Scholar] [CrossRef]
- Cambero, C.; Sowlati, T.; Marinescu, M.; Röser, D. Strategic optimization of forest residues to bioenergy and biofuel supply chain. Int. J. Energy Res. 2015, 39, 439–452. [Google Scholar] [CrossRef]
- Smyth, C.E.; Stinson, G.; Neilson, E.; Lemprière, T.C.; Hafer, M.; Rampley, G.J.; Kurz, W.A. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 2014, 11, 3515–3529. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Smyth, C.E.; Lemprière, T.C.; Rampley, G.J.; Kurz, W.A. Climate change mitigation strategies in the forest sector: Biophysical impacts and economic implications in British Columbia, Canada. Mitig. Adapt. Strateg. Glob. Change 2018, 23, 257–290. [Google Scholar] [CrossRef] [Green Version]
- Marland, G.; Pielke, R.A.; Apps, M.; Avissar, R.; Betts, R.A.; Davis, K.J.; Frumhoff, P.C.; Jackson, S.T.; Joyce, L.A.; Kauppi, P.; et al. The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Clim. Policy 2003, 3, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2014 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Barrette, J.; Paré, D.; Manka, F.; Guindon, L.; Bernier, P.; Titus, B. Forecasting the spatial distribution of logging residues across the Canadian managed forest. Can. J. For. Res. 2018, 48, 1470–1481. [Google Scholar] [CrossRef]
- Dymond, C.C.; Kamp, A. Fibre use, net calorific value, and consumption of forest-derived bioenergy in British Columbia, Canada. Biomass Bioenergy 2014, 70, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Smyth, C.; Rampley, G.; Lemprière, T.C.; Schwab, O.; Kurz, W.A. Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. Glob. Change Biol. Bioenergy 2017, 9, 1071–1084. [Google Scholar] [CrossRef] [Green Version]
- Trofymow, J.A.; Coops, N.C.; Hayhurst, D. Comparison of remote sensing and ground-based methods for determining residue burn pile wood volumes and biomass. Can. J. For. Res. 2014, 44, 182–194. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energy Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Dymond, C.C.; Titus, B.D.; Stinson, G.; Kurz, W.A. Future quantities and spatial distribution of harvesting residue and dead wood from natural disturbances in Canada. For. Ecol. Manag. 2010, 260, 181–192. [Google Scholar] [CrossRef]
- Wells, L.A.; Chung, W.; Anderson, N.M.; Hogland, J.S. Spatial and temporal quantification of forest residue volumes and delivered costs. Can. J. For. Res. 2016, 46, 832–843. [Google Scholar] [CrossRef]
- Pokharel, R.; Grala, R.K.; Latta, G.S.; Grebner, D.L.; Grado, S.C.; Poudel, J. Availability of logging residues and likelihood of their utilization for electricity production in the US south. J. For. 2019, 117, 543–559. [Google Scholar] [CrossRef]
- Ranta, T. Logging residues from regeneration fellings for biofuel production—A GIS-based availability analysis in Finland. Biomass Bioenergy 2005, 28, 171–182. [Google Scholar] [CrossRef]
- Mansuy, N.; Paré, D.; Thiffault, E.; Bernier, P.Y.; Cyr, G.; Manka, F.; Lafleur, B.; Guindon, L. Estimating the spatial distribution and locating hotspots of forest biomass from harvest residues and fire-damaged stands in Canada’s managed forests. Biomass Bioenergy 2017, 97, 90–99. [Google Scholar] [CrossRef]
- Sidders, D.; Joss, B.; Keddy, T. Project TID8 25B: GIS-Based Inventory and Analysis of Forestry and Agriculture Biomass; Natural Resources Canada: Ottawa, ON, Canada, 2008. [Google Scholar]
- Ferster, C.J.; Coops, N.C.; Trofymow, J.A.T. Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from lidar. Can. J. Remote Sens. 2009, 35, 270–275. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Woods, M.; Lim, K.; Treitz, P. Predicting forest stand variables from LiDAR data in the Great Lakes—St. Lawrence forest of Ontario. For. Chron. 2008, 84, 827–839. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Wulder, M.A.; Buckmaster, G. Validating estimates of merchantable volume from airborne laser scanning (ALS) data using weight scale data. For. Chron. 2014, 90, 378–385. [Google Scholar] [CrossRef]
- Tompalski, P.; White, J.C.; Coops, N.C.; Wulder, M.A. Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data. Remote Sens. Environ. 2019, 227, 110–124. [Google Scholar] [CrossRef]
- Kelley, J.; Trofymow, J.A.; Metsaranta, J.M.; Filipescu, C.N.; Bone, C. Use of multi-temporal LiDAR to quantify fertilization effects on stand volume and biomass in late-rotation coastal Douglas-fir forests. Forests 2021, 12, 517. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Varhola, A.; Vastaranta, M.; Coops, N.C.; Cook, B.D.; Pitt, D.; Woods, M. A Best Practices Guide for Generating Forest Inventory Attributes from Airborne Laser Scanning Data Using an Area-Based Approach; Information Report FI-X-010; Natural Resources Canada: Victoria, BC, Canada, 2013; p. 39. Available online: https://cfs.nrcan.gc.ca/publications?id=34887 (accessed on 16 January 2018).
- Holopainen, M.; Vastaranta, M.; Rasinmäki, J.; Kalliovirta, J.; Mäkinen, A.; Haapanen, R.; Melkas, T.; Yu, X.; Hyyppä, J. Uncertainty in timber assortment estimates predicted from forest inventory data. Eur. J. For. Res. 2010, 129, 1131–1142. [Google Scholar] [CrossRef]
- Korhonen, L.; Peuhkurinen, J.; Malinen, J.; Suvanto, A.; Maltamo, M.; Packalen, P.; Kangas, J. The use of airborne laser scanning to estimate sawlog volumes. For. Int. J. For. Res. 2008, 81, 499–510. [Google Scholar]
- Gougeon, F.A.; Leckie, D.G. Pacific Forestry Centre. Forest Information Extraction from High Spatial Resolution Images Using an Individual Tree Crown Approach; Natural Resources Canada: Victoria, BC, Canada, 2003. [Google Scholar]
- Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 2016, 7, 1236–1245. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the Lidar point cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M.; et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Kozak, A. Development of Taper Equations by BEC Zones and Species. Available online: https://www.for.gov.bc.ca/hfd/library/documents/bib95354a.pdf (accessed on 20 October 2018).
- Blackburn, R.C.; Buscaglia, R.; Sanchez Meador, A. Mixtures of airborne lidar-based approaches improve predictions of forest structure. Can. J. For. Res. 2021, 51, 1106–1116. [Google Scholar] [CrossRef]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J.; et al. Advances in forest inventory using airborne laser scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef] [Green Version]
- Kankare, V.; Vastaranta, M.; Holopainen, M.; Räty, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Alho, P.; Viitala, R. Retrieval of forest aboveground biomass and stem volume with airborne scanning LiDAR. Remote Sens. 2013, 5, 2257–2274. [Google Scholar] [CrossRef] [Green Version]
- Trofymow, J.A.; Kelley, J.; Gougeon, F. Comparison of geospatial and ground-based methods for determining post-harvest dispersed woody residues. Can. J. For. Res. 2019, 49, 1277–1288. [Google Scholar] [CrossRef]
- Trofymow, J.A.; Gougeon, F.; Kelley, J. Determination of Dispersed and Piled Post-Harvest Residues in Coastal Douglas-Fir Cutblocks Using Unmanned Aerial Vehicle Imagery and Ground-Based Surveys; Information Report FI-X-015; Natural Resources Canada: Victoria, BC, Canada, 2017; p. 39. Available online: http://cfs.nrcan.gc.ca/publications?id=38836 (accessed on 11 July 2019).
- Pojar, J.; Klinka, K.; Demarchi, D.A. Chapter 6: Coastal Western Hemlock Zone. In Ecosystems of British Columbia; BC Special Report Series No., 6; Meidinger, D., Pojar, J., Eds.; BC Ministry of Forests: Victoria, BC, Canada, 1991; pp. 95–111. [Google Scholar]
- Coursolle, C.; Margolis, H.A.; Giasson, M.; Bernier, P.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; Black, T.A.; Goulden, M.L.; McCaughey, J.H. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric. For. Meteorol. 2012, 165, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Trofymow, J.A.; Porter, G.L.; Blackwell, B.A.; Marshall, V.; Arskey, R.; Pollard, D. Chronosequences Selected for Research into the Effects of Converting Coastal British Columbia Old Growth Forests to Managed Forests: An Establishment Report; Information Report BC-X-374; Pacific Forestry Centre: Victoria, BC, Canada, 1997; p. 137. [Google Scholar]
- Blackwell, B.A.; Trofymow, J.A.; Hedberg, H.A. Pacific Forestry Centre. Stand Structure and Species Composition in Chronosequences of Forests on Southern Vancouver Island; Natural Resources Canada: Victoria, BC, Canada, 2002. [Google Scholar]
- He, F.; Duncan, R.P. Density-dependent effects on tree survival in an old-growth Douglas fir forest. J. Ecol. 2000, 88, 676–688. [Google Scholar] [CrossRef]
- Hilker, T.; van Leeuwen, M.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Jupp, D.L.B.; Culvenor, D.S. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a douglas-fir dominated forest stand. Trees 2010, 24, 819–832. [Google Scholar] [CrossRef]
- Quinn, G.S. Derivation of Forest Productivity and Structure Attributes from Remote Sensing Imaging Technology. Ph.D. Thesis, University of Victoria, Victoria, BC, Canada, 2018. Available online: https://dspace.library.uvic.ca:8443/handle/1828/10471 (accessed on 27 March 2022).
- Roussel, J.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Achim, A. LidR: An R package for analysis of airborne laser scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating pit-free canopy height models from airborne Lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [Google Scholar] [CrossRef]
- National Forest Inventory. Canada’s National Forest Inventory Ground Sampling Guidelines: Specifications for Ongoing Measurements; Version 5.0; National Forest Inventory: Farnham, UK, 2008. Available online: https://nfi.nfis.org/resources/groundplot/Gp_guidelines_v5.0.pdf (accessed on 15 August 2020).
- Timber Pricing Branch. Scaling Manual; Ministry of Forests Lands and Natural Resource Operations: Victoria, BC, Canada, 2011. Available online: https://www.for.gov.bc.ca/ftp/hva/external/!publish/web/manuals/Scaling/2011/Scaling2011NovMaster.pdf (accessed on 27 March 2022).
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- White, J.C.; Stepper, C.; Tompalski, P.; Coops, N.C.; Wulder, M.A. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests 2015, 6, 3704–3732. [Google Scholar] [CrossRef]
- Metsaranta, J.M.; Trofymow, J.A.; Black, T.A.; Jassal, R.S. Long-term time series of annual ecosystem production (1985–2010) derived from tree rings in Douglas-fir stands on Vancouver Island, Canada using a hybrid biometric-modelling approach. For. Ecol. Manag. 2018, 429, 57–68. [Google Scholar] [CrossRef]
- Province of British Columbia. Forest Inventory. Available online: https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/forest-inventory (accessed on 29 May 2021).
- Province of British Columbia. Provincial Logging Residue and Waste Measurement Procedures Manual. Available online: https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/forestry/timber-pricing/residue-and-waste/rwp_amend_28.pdf (accessed on 29 May 2021).
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H. Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update. Can. J. Remote Sens. 2013, 39, 382–395. [Google Scholar] [CrossRef]
- Kotivuori, E.; Korhonen, L.; Packalen, P. Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. Silva Fenn. 2016, 50, 1567. [Google Scholar] [CrossRef] [Green Version]
- Poudel, K.P.; Temesgen, H.; Gray, A.N. Estimating upper stem diameters and volume of Douglas-fir and western hemlock trees in the Pacific Northwest. For. Ecosyst. 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Miles, P.D.; Smith, W.B. Specific Gravity and Other Properties of Wood and Bark for 156 Tree Species Found in North America; Research Note NRS-38; USDA Forest Service, Northern Research Station: Newtown Square, PA, USA, 2009.
- Heinaro, E.; Tanhuanpää, T.; Yrttimaa, T.; Holopainen, M.; Vastaranta, M. Airborne laser scanning reveals large tree trunks on forest floor. For. Ecol. Manag. 2021, 491, 119225. [Google Scholar] [CrossRef]
Site | Block | Est. Date | Species | Site Index | Elevation | Slope | Harvest Year |
---|---|---|---|---|---|---|---|
OR | WH017 | 1949 | FdHwCw | 37.0 | 259 | 10 | 2011 |
OR | WH017a | 1949 | FdHwCw | 36.0 | 328 | 11 | 2010 |
OR | WH017b | 1949 | FdHwCw | 34.0 | 335 | 11 | 2011 |
OR | WH017c | 1949 | FdHwCw | 37.0 | 275 | 7 | 2011 |
SWS | 02 | 1960 | FdHwCw | 38.8 | 296 | 20 | - |
SWS | 05 | 1892 | FdCw | 25.6 | 220 | 8 | - |
SWS | 09 | 1816 | FdCw | 24.3 | 347 | 25 | - |
SWN | 12 | 1949 | FdCwHw | 33.4 | 348 | 8 | - |
SWN | 13 | 1898 | FdCwHw | 29.9 | 250 | 12 | - |
SWN | 15 | 1695 | Fd | 29.9 | 491 | 21 | - |
NWB | 193401 | 1962 | FdCwHw | 28.0 | 456 | 10 | 2014 |
NWB | 193423 | 1959 | FdHwCw | 28.0 | 612 | 15 | 2014 |
FR | 073213 | 1943 | HwFd | 34.2 | 281 | 15 | 2019 |
FR | 062210 | 1945 | FdHwCw | 31.2 | 132 | 17 | 2018 |
FR | 973413 | 1948 | FdHw | 29.5 | 316 | 23 | 2018 |
FR | 971315 | 1941 | HwFdBa | 29.4 | 348 | 19 | 2019 |
FR | 972124 | 1945 | HwFd | 27.5 | 192 | 17 | 2019 |
FR | 874328 | 1943 | FdHw | 29.5 | 167 | 24 | 2019 |
Site | Point Density | Image Resolution (m) | LiDAR (Image) Year |
---|---|---|---|
Pre-harvest | |||
OR | 6.9 | 1.0 | 2008 (2007) |
SWS | 3.7 | 0.2 | 2012 (2013) |
SWN | 10.1 | 0.2 | 2012 (2012 *) |
NWB | 23.1 | 0.1 | 2011 (2011) |
FR | 52.2 | 0.1 | 2016 (2016) |
Post-harvest | |||
OR | 15.1 | 0.02 | 2011 (2012) |
NWB | n/a | 0.02 | n/a (2016) |
FR | n/a | 0.02 | n/a (2019) |
Class | Code | Description |
---|---|---|
AB | CanRelRatio | ((mean ht − min ht)/(max ht − min ht)) |
AB | p1st_abv_2 | Percentage 1st returns above 2 m |
AB | p1st_abv_Mean | Percentage 1st returns above mean ht |
AB | p1st_abv_Mode | Percentage 1st returns above mode ht |
AB | Zaad | Average absolute deviation (AD) of ht |
AB | Zl1 | First L moment |
AB | Zl2 | Second L moment |
AB | Zlcv | L-moment coefficient of variation |
AB | Zlkur | L-moment kurtosis |
AB | Zlskew | L-moment skewness |
AB | Zmadmed | Median of the AD from the overall median |
AB | Zmadmod | Median of the AD from the overall mode |
AB | ZquadMean | Quadratic mean of ht |
AB | zq10-95 | Xth percentile of height distribution (10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95) |
AB | Zpcum1-9 | Cumulative percentage of returns in the Xth decile (1–9) |
IT | IT_TTDens | Individual tree density (# ha−1) |
IT | IT_z95 | 95th percentile of individual tree LiDAR points |
IT | IT_crownarea | Individual tree crown area |
IT | IT_redspec | Individual tree mean red channel |
IT | IT_greenspec | Individual tree mean green channel |
IT | IT_bluespec | Individual tree mean blue channel |
Site | Block | GIS Area | Merchantable Volume | Non-Merchantable Volume |
---|---|---|---|---|
OR | WH017 | 11.44 | 607.63 | 131.02 |
OR | WH017a | 24.29 | 518.36 | 126.95 |
OR | WH017b | 18.16 | 538.49 | 130.23 |
OR | WH017c | 22.59 | 579.99 | 128.43 |
SWS | 02 | 0.704 | 352.54 | 78.35 |
SWS | 05 | 1.066 | 877.71 | 176.05 |
SWS | 09 | 1.000 | 1156.14 | 178.38 |
SWN | 12 | 1.188 | 406.05 | 130.02 |
SWN | 13 | 1.240 | 670.08 | 140.23 |
SWN | 15 | 1.139 | 749.32 | 116.19 |
NWB | 193401 | 11.59 | 352.21 | 123.97 |
NWB | 193423 | 20.30 | 363.03 | 128.66 |
FR | 073213 | 17.58 | 774.20 | 155.55 |
FR | 062210 | 16.64 | 606.05 | 138.79 |
FR | 973413 | 27.95 | 615.02 | 136.68 |
FR | 971315 | 36.58 | 550.36 | 142.80 |
FR | 972124 | 29.92 | 635.92 | 147.93 |
FR | 874328 | 16.35 | 750.96 | 150.26 |
Site | Block | HS Volume | FC Volume | HB Volume | FC-HS Volume | HB-HS Volume |
---|---|---|---|---|---|---|
OR | WH017 | 647 | 559 | 608 | −88 | −40 |
OR | WH017a | 564 | 559 | 518 | −5 | −46 |
OR | WH017b | 656 | 337 | 538 | −319 | −118 |
OR | WH017c | 557 | 559 | 580 | 2 | 23 |
OR | Avg (SE) | 606 (26) | 504 (56) | 561 (20) | 104 (75) | 56 (21) |
SWS | 02 | 270 * | 533 | 353 | 263 | 83 |
SWS | 05 | 946 * | 672 | 878 | −274 | −69 |
SWS | 09 | 994 * | 741 | 1156 | −253 | 162 |
SWS | Avg (SE) | 737 (234) | 649 (61) | 795 (236) | 264 (6) | 104 (29) |
SWN | 12 | 293 * | 396 | 406 | 103 | 113 |
SWN | 13 | 436 * | 598 | 670 | 162 | 234 |
SWN | 15 | 976 * | 497 | 749 | −479 | −226 |
SWN | Avg (SE) | 568 (208) | 497 (58) | 608 (104) | 248 (117) | 191 (39) |
NWB | 193401 | 419 | 241 | 352 | −178 | −67 |
NWB | 193423 | 519 | 202 | 363 | −317 | −156 |
NWB | Avg (SE) | 469 (50) | 222 (20) | 358 (5) | 248 (70) | 112 (45) |
FR | 073213 | 825 | 550 | 774 | −275 | −51 |
FR | 062210 | 672 | 582 | 606 | −90 | −66 |
FR | 973413 | 738 | 569 | 615 | −169 | −123 |
FR | 971315 | 755 | 700 | 550 | −55 | −205 |
FR | 972124 | 838 | 841 | 636 | 3 | −202 |
FR | 874328 | 708 | 560 | 751 | −148 | 43 |
FR | Avg (SE) | 756 (27) | 634 (47) | 655 (36) | 123 (39) | 115 (30) |
Blocks n = 18 Blocks n = 12 | Avg (SE) Avg (SE) | 656 * (51) 658 (36) | 539 (38) 522 (52) | 617 (48) 574 (37) | 177 (31) 137 (34) | 112 (16) 95 (19) |
Site | Block | WRS | SLDP | HB Model | HB-WRS | HB- SLDP |
---|---|---|---|---|---|---|
OR | WH017 | 120 | 157 | 131 | −11 | 26 |
OR | WH017a | 67 | 174 | 127 | −60 | 47 |
OR | WH017b | 58 | 178 | 130 | −73 | 48 |
OR | WH017c | 110 | 189 | 128 | −18 | 60 |
OR | Avg (SE) | 89 (15) | 175 (7) | 129 (1) | 40 (15) | 46 (7) |
SWS | 02 | 49 * | 78 | −30 | ||
SWS | 05 | 163 * | 176 | −13 | ||
SWS | 09 | 168 * | 178 | −10 | ||
SWS | Avg (SE) | 127 (39) | 144 (33) | 18 (6) | ||
SWN | 12 | 109 * | 130 | −21 | ||
SWN | 13 | 74 * | 140 | −66 | ||
SWN | 15 | 130 * | 116 | 14 | ||
SWN | Avg (SE) | 104 (16) | 129 (7) | 34 (16) | ||
NWB | 193401 | 76 | 87 | 124 | −48 | −37 |
NWB | 193423 | 72 | 85 | 129 | −56 | −44 |
NWB | Avg (SE) | 74 (2) | 86 (1) | 126 (2) | 52 (4) | 40 (3) |
FR | 073213 | 75 | 166 | 156 | −81 | 10 |
FR | 062210 | 58 | 158 | 139 | −80 | 19 |
FR | 973413 | 117 | 167 | 137 | −19 | 31 |
FR | 971315 | 59 | 146 | 143 | −84 | 3 |
FR | 972124 | 80 | 133 | 148 | −68 | −15 |
FR | 874328 | 108 | 178 | 150 | −42 | 28 |
FR | Avg (SE) | 83 (10) | 158 (7) | 145 (3) | 62 (11) | 18 (4) |
Blocks n = 18 Blocks n = 12 | Avg (SE) Avg (SE) | 84 (7) | 140 * (10) 152 (10) | 137 (5) 137 (3) | 53 (7) | 29 (4) 31 (5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelley, J.; Trofymow, J.A.; Bone, C. Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests. Remote Sens. 2022, 14, 2204. https://doi.org/10.3390/rs14092204
Kelley J, Trofymow JA, Bone C. Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests. Remote Sensing. 2022; 14(9):2204. https://doi.org/10.3390/rs14092204
Chicago/Turabian StyleKelley, Jason, J. A. (Tony) Trofymow, and Christopher Bone. 2022. "Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests" Remote Sensing 14, no. 9: 2204. https://doi.org/10.3390/rs14092204
APA StyleKelley, J., Trofymow, J. A., & Bone, C. (2022). Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests. Remote Sensing, 14(9), 2204. https://doi.org/10.3390/rs14092204