Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color
Abstract
:1. Introduction
2. Data and Study Area
2.1. Study Area
2.2. In Situ Spectral Data
2.3. Synthetic Spectral Data
2.4. Image Pre-Processing
3. Methods
3.1. Analysis of Spectral Features
3.2. Pseudo-Forel-Ule Index
3.3. Hue Angle Correction
3.4. P-FUI Decision Tree
3.5. Assessment Method
4. Results
4.1. Accuracy Assessment
4.2. Comparison Validation
4.2.1. Supervised (Unsupervised) Classification Subsubsection
4.2.2. Multi-Index Decision Tree
5. Discussion
5.1. Impact Factors
5.1.1. Cloud Cover
5.1.2. Water Body with High Turbidity
5.1.3. Chlorophyll-a Concentrations
5.2. Applicability to New Regions
5.3. Implications for Monitoring Blooms and Protecting Water
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
P-FUI | Pseudo-Forel-Ule Index; |
CBs | Cyanobacterial Blooms; |
FAI | Floating Algae Index; |
EVI | Enhanced Vegetation Index; |
NDVI | Normalized Difference Vegetation Index; |
CMI | Cyanobacteria and Macrophytes Index; |
TWI | Turbid Water Index; |
MNDWI | Modified Normalized Difference Water Index; |
VIS | Visible light; |
NIR | Near-InfraRed; |
SWIR | Short-Wave InfraRed; |
ISODATA | Iterative Self-Organizing Data Analysis Techniques Algorithm; |
MLC | Maximum Likelihood Classification; |
OA | Overall Accuracy; |
UA | User’s Accuracy; |
PA | Producer’s Accuracy. |
References
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Fang, C.; Jacinthe, P.-A.; Wen, Z.; Liu, G.; Xu, X.; Shang, Y.; Lyu, L. Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environ. Sci. Technol. 2021, 55, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, A.; Ostrovsky, I.; Sukenik, A.; Gildor, H. Turbulence regulation of Microcystis surface scum formation and dispersion during a cyanobacteria bloom event. Inland Waters 2020, 10, 51–70. [Google Scholar] [CrossRef]
- Dittmann, E.; Wiegand, C. Cyanobacterial toxins–occurrence, biosynthesis and impact on human affairs. Mol. Nutr. Food Res. 2006, 50, 7–17. [Google Scholar] [CrossRef]
- Fernandes, S.P.; Kovar, P.; Psenicka, M.; Silva, A.M.; Salonen, L.M.; Espina, B. Selection of covalent organic framework pore functionalities for differential adsorption of microcystin toxin analogues. ACS Appl. Mater. Interfaces 2021, 13, 15053–15063. [Google Scholar] [CrossRef]
- Sarkar, A.; Rajarathinam, R.; Venkateshan, R.B. A comparative assessment of growth, pigment and enhanced lipid production by two toxic freshwater cyanobacteria Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of nitrogen and phosphorous inputs. Environ. Sci. Pollut. Res. 2021, 28, 15923–15933. [Google Scholar] [CrossRef]
- Zervou, S.-K.; Moschandreou, K.; Paraskevopoulou, A.; Christophoridis, C.; Grigoriadou, E.; Kaloudis, T.; Triantis, T.M.; Tsiaoussi, V.; Hiskia, A. Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece. Toxins 2021, 13, 394. [Google Scholar] [CrossRef]
- Brooks, B.W.; Lazorchak, J.M.; Howard, M.D.A.; Johnson, M.-V.V.; Morton, S.L.; Perkins, D.A.K.; Reavie, E.D.; Scott, G.I.; Smith, S.A.; Steevens, J.A. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 2016, 35, 6–13. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, X.; Dong, R. Long-term spatial and temporal monitoring of cyanobacteria blooms using MODIS on google earth engine: A case study in Taihu Lake. Remote Sens. 2019, 11, 2269. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.; Zhu, G.; Gaoa, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Li, W.; Zhu, G.; Zhang, Y.; Wu, T.; Gao, G. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). J. Hazard. Mater. 2015, 287, 356–363. [Google Scholar] [CrossRef]
- Millie, D.F.; Weckman, G.R.; Young II, W.A.; Ivey, J.E.; Fries, D.P.; Ardjmand, E.; Fahnenstiel, G.L. Coastal ‘Big Data’and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric. Estuar. Coast. Shelf Sci. 2013, 125, 57–67. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote sensing of cyanobacterial blooms in inland waters: Present knowledge and future challenges. Sci. Bull. 2019, 64, 1540–1556. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens. Environ. 2008, 112, 4098–4106. [Google Scholar] [CrossRef]
- Hunter, P.D.; Tyler, A.N.; Carvalho, L.; Codd, G.A.; Maberly, S.C. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ. 2010, 114, 2705–2718. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W.; Bernard, S.; Robertson, L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Stroming, S.; Robertson, M.; Mabee, B.; Kuwayama, Y.; Schaeffer, B. Quantifying the human health benefits of using satellite information to detect cyanobacterial harmful algal blooms and manage recreational advisories in US Lakes. GeoHealth 2020, 4, e2020GH000254. [Google Scholar] [CrossRef]
- Boardman, J.W. Automating spectral unmixing of AVIRIS data using convex geometry concepts. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop, AVIRIS Workshop, Washington, DC, USA, 25–29 October 1993; Volume 1. [Google Scholar]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Metsamaa, L.; Strömbeck, N.; Vahtmäe, E. Monitoring cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 2006, 67, 303–312. [Google Scholar] [CrossRef]
- Quibell, G. Estimating chlorophyll concentrations using upwelling radiance from different freshwater algal genera. Int. J. Remote Sens. 1992, 13, 2611–2621. [Google Scholar] [CrossRef]
- Cao, M.; Qing, S.; Jin, E.; Hao, Y.; Zhao, W. A spectral index for the detection of algal blooms using Sentinel-2 Multispectral Instrument (MSI) imagery: A case study of Hulun Lake, China. Int. J. Remote Sens. 2021, 42, 4514–4535. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, Y.; Ma, R.; Loiselle, S.; Li, J.; Hu, M. A MODIS-based novel method to distinguish surface cyanobacterial scums and aquatic macrophytes in Lake Taihu. Remote Sens. 2017, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Witter, D.; Ortiz, J. Application of empirical and semi-analytical algorithms to MERIS data for estimating chlorophyll a in Case 2 waters of Lake Erie. Environ. Earth Sci. 2014, 71, 4209–4220. [Google Scholar] [CrossRef]
- Lou, I.; Han, B.; Zhang, W. Advances in Monitoring and Modelling Algal Blooms in Freshwater Reservoirs; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Kotu, V.; Deshpande, B. Chapter 2—Data Mining Process. In Predictive Analytics and Data Mining; Kotu, V., Deshpande, B., Eds.; Morgan Kaufmann: Boston, MA, USA, 2015; pp. 17–36. [Google Scholar] [CrossRef]
- Pasterkamp, R.; Peters, S.; Van Der Woerd, H.; Hoogenboom, H. Detection of algal blooms in the North Sea using supervised classification of SeaWiFS reflectance imagery. In Proceedings of the International Conference on Remote Sensing for Marine and Coastal Environments, Miami, FL, USA, 20–22 May 2002. [Google Scholar]
- Shen, L.; Xu, H.; Guo, X. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef]
- Wrigley, R.C.; Horne, A.J. Remote sensing and lake eutrophication. Nature 1974, 250, 213–214. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, S. Cyanobacteria bloom monitoring with remote sensing in Lake Taihu (in Chinese with English abstract). J. Lake Sci. 2008, 20, 8. [Google Scholar] [CrossRef]
- Gower, J. Red tide monitoring using AVHRR HRPT imagery from a local receiver. Remote Sens. Environ. 1994, 48, 309–318. [Google Scholar] [CrossRef]
- Choi, J.-K.; Min, J.-E.; Noh, J.H.; Han, T.-H.; Yoon, S.; Park, Y.J.; Moon, J.-E.; Ahn, J.-H.; Ahn, S.M.; Park, J.-H. Harmful algal bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI). Harmful Algae 2014, 39, 295–302. [Google Scholar] [CrossRef]
- Peretyatko, A.; Teissier, S.; De Backer, S.; Triest, L. Classification trees as a tool for predicting cyanobacterial blooms. Hydrobiologia 2012, 689, 131–146. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.; Zhang, F.; Shen, Q. Distinguishing cyanobacterial bloom from floating leaf vegetation in Lake Taihu based on medium-resolution imaging spectrometer (MERIS) data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 34–44. [Google Scholar] [CrossRef]
- Mishra, S.; Stumpf, R.P.; Schaeffer, B.A.; Werdell, P.J.; Loftin, K.A.; Meredith, A. Measurement of cyanobacterial bloom magnitude using satellite remote sensing. Sci. Rep. 2019, 9, 18310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.A.; Xu, J.; Ma, M. A novel algorithm to estimate algal bloom coverage to subpixel resolution in Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3060–3068. [Google Scholar] [CrossRef]
- Cao, H.; Han, L. Hourly remote sensing monitoring of harmful algal blooms (HABs) in Taihu Lake based on GOCI images. Environ. Sci. Pollut. Res. 2021, 28, 35958–35970. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Zhang, Y.; Hu, M.; Chu, Q.; Ma, R. MODIS-satellite-based analysis of long-term temporal-spatial dynamics and drivers of algal blooms in a plateau lake Dianchi, China. Remote Sens. 2019, 11, 2582. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; An, Z.; Jiang, Z.; Ma, Y. A novel spectral-unmixing-based green algae area estimation method for GOCI data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 437–449. [Google Scholar] [CrossRef]
- Roelfsema, C.; Phinn, S.; Dennison, W.; Dekker, A.; Brando, V. Monitoring toxic cyanobacteria Lyngbya majuscula (Gomont) in Moreton Bay, Australia by integrating satellite image data and field mapping. Harmful Algae 2006, 5, 45–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, M.; Shi, K.; Zhang, M.; Han, T.; Lai, L.; Zhan, P. Sensitivity of phytoplankton to climatic factors in a large shallow lake revealed by column-integrated algal biomass from long-term satellite observations. Water Res. 2021, 207, 117786. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; He, B.; Fu, C.; Xiao, F.; Feng, Q.; Liu, H.; Zhou, X.; Yang, X.; Du, Y. An improved Forel–Ule index method for trophic state assessments of inland waters using Landsat 8 and sentinel archives. GIScience Remote Sens. 2021, 58, 1316–1334. [Google Scholar] [CrossRef]
- Prasad, S.; Saluja, R.; Garg, J. Assessing the efficacy of Landsat-8 OLI imagery derived models for remotely estimating chlorophyll-a concentration in the Upper Ganga River, India. Int. J. Remote Sens. 2020, 41, 2439–2456. [Google Scholar] [CrossRef]
- Oyama, Y.; Fukushima, T.; Matsushita, B.; Matsuzaki, H.; Kamiya, K.; Kobinata, H. Monitoring levels of cyanobacterial blooms using the visual cyanobacteria index (VCI) and floating algae index (FAI). Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 335–348. [Google Scholar] [CrossRef]
- Huang, W.; Lou, X. AVHRR detection of red tides with neural networks. Int. J. Remote Sens. 2003, 24, 1991–1996. [Google Scholar] [CrossRef]
- Shin, J.; Yoon, S.; Cha, Y. Prediction of cyanobacteria blooms in the lower Han River (South Korea) using ensemble learning algorithms. Desalin. Water Treat 2017, 84, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Hill, P.R.; Kumar, A.; Temimi, M.; Bull, D.R. HABNet: Machine learning, remote sensing-based detection of harmful algal blooms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3229–3239. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Duan, H.; Cannizzaro, J.; Ma, R. A novel MERIS algorithm to derive cyanobacterial phycocyanin pigment concentrations in a eutrophic lake: Theoretical basis and practical considerations. Remote Sens. Environ. 2014, 154, 298–317. [Google Scholar] [CrossRef]
- Li, J.; Wu, D.; Wu, Y.; Liu, H.; Shen, Q.; Zhang, H. Identification of algae-bloom and aquatic macrophytes in Lake Taihu from in-situ measured spectra data (in Chinese with English abstract). J. Lake Sci. 2009, 21, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Dyble, J. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr. 2010, 55, 2025–2036. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007–2017) efforts. Sci. Bull. 2019, 64, 354–356. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, M.J.; Lavrentyev, P.J.; Yang, L.; Zhang, L.; Chen, Y.; Qin, B.; Gardner, W.S. Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China; Springer: Berlin, Germany, 2007; pp. 195–207. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of lake Taihu, China. In Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China; Springer: Berlin, Germany, 2007; pp. 3–14. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Pu, R.; Duan, H.; Ma, R.; Mao, Z.; Zeng, Y.; Huang, L.; Xiao, Q. Evaluating the influences of harvesting activity and eutrophication on loss of aquatic vegetations in Taihu Lake, China. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102038. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, B.-Q.; Guangwei, Z.H.U. Long-term changes in physical environments and potential implications for the eco-environment of Lake Taihu in the past four decades. J. Lake Sci. 2020, 32, 1348–1359. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Z.; Shi, X. Expansion and drivers of cyanobacterial blooms in Lake Taihu. J. Lake Sci. 2019, 31, 336–344, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Qin, B.; Shi, K.; Deng, J.; Zhou, Y. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci. Rep. 2016, 6, 23867. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Oceans 2010, 115, C04002. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Duan, H.; Lü, C.; Loiselle, S. Unusual links between inherent and apparent optical properties in shallow lakes, the case of Taihu Lake. Hydrobiologia 2011, 667, 149–158. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Remote sensing of diffuse attenuation coefficient of photosynthetically active radiation in Lake Taihu using MERIS data. Remote Sens. Environ. 2014, 140, 365–377. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, P.; Yang, L.; Gao, G.; Liu, Z.; Pan, G.; Zhu, B. Ecological Consequences of Cyanobacetrial Blooms in Lakes and Their Countermeasures (in Chinese with English abstract). Adv. Earth Sci. 2008, 23, 1115. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Dong, X.; Liu, E. Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica 2013, 43, 10–17. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Mol, A.P. Evaluation of phosphorus flows in the Dianchi Watershed, southwest of China. Popul. Environ. 2004, 25, 637–656. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Q.; Li, G.; Zhang, H.; Zhang, J. Losses of ecosystem service values in the Taihu Lake Basin from 1979 to 2010. Front. Earth Sci. 2017, 11, 310–320. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Yao, T.; Kang, S. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin. Sci. Bull. 2013, 58, 3815–3829. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Yin, J.; Cai, L.; Zhang, K.; Hyde, K.D. Freshwater fungi in Lake Dianchi, a heavily polluted lake in Yunnan, China. Fungal Divers. 2004, 16, 93–112. [Google Scholar]
- Dong, J.; Li, C.; Dai, D.; Yao, S.; Li, S.; Zhou, Q. Seasonal succession of phytoplankton functional groups in Lake Fuxian and its driving factors. Ann. Limnol. Int. J. Limnol. 2019, 55, 24. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, R. Water eutrophication in China and the combating strategies. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2007, 82, 781–786. [Google Scholar] [CrossRef]
- Ma, R.; Tang, J.W.; Dai, J.F. Bio-optical model with optimal parameter suitable for Taihu Lake in water colour remote sensing. Int. J. Remote Sens. 2006, 27, 4305–4328. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.; Steward, R.; Hooker, S.; Mobley, C. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume III: Radiometric Measurements and Data Analysis Protocols; Goddard Space Flight Space Center: Greenbelt, MD, USA, 2003. [Google Scholar]
- Ahn, Y.-H.; Shanmugam, P. Derivation and analysis of the fluorescence algorithms to estimate phytoplankton pigment concentrations in optically complex coastal waters. J. Opt. A Pure Appl. Opt. 2007, 9, 352. [Google Scholar] [CrossRef]
- Jeffrey, S.; Humphrey, G. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Und Physiol. Der Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- IOCCG. Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. In Reports of the International Ocean-Colour Coordinating Group, No. 5; Lee, Z.-P., Ed.; IOCCG: Dartmouth, NS, Canada, 2006. [Google Scholar] [CrossRef]
- Salama, M.S.; Mélin, F.; Van der Velde, R. Ensemble uncertainty of inherent optical properties. Opt. Express 2011, 19, 16772–16783. [Google Scholar] [CrossRef] [PubMed]
- Van der Woerd, H.J.; Wernand, M.R. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [Google Scholar] [CrossRef] [Green Version]
- Rani, N.; Mandla, V.R.; Singh, T. Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping. Geosci. Front. 2017, 8, 797–808. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Mao, Z.; Chen, P.; Gong, F.; Zhu, Q. Comparison and evaluation of atmospheric correction algorithms of QUAC, DOS, and FLAASH for HICO hyperspectral imagery. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Edinburgh, UK, 26–27 September 2016; p. 999917. [Google Scholar] [CrossRef]
- Efstathiou, M.; Varotsos, C.; Kondratyev, K.Y. An estimation of the surface solar ultraviolet irradiance during an extreme total ozone minimum. Meteorol. Atmos. Phys. 1998, 68, 171–176. [Google Scholar] [CrossRef]
- Varotsos, C.; Kondratyev, K.Y.; Katsikis, S. On the relationship between total ozone and solar ultraviolet radiation at St. Petersburg, Russia. Geophys. Res. Lett. 1995, 22, 3481–3484. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcrette, J.; Kotchenova, S. Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6s User Guide Version 2006, 3, 1–55. [Google Scholar] [CrossRef]
- Hu, H.; Kang, J.; Zhang, X.; Du, K. Atmospheric correction of SPOT satellite images based on radiation transfer model. In Proceedings of the 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 22–24 October 2010; pp. V5-188–V185-191. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Liao, P.-S.; Chen, T.-S.; Chung, P.-C. A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 2001, 17, 713–727. [Google Scholar] [CrossRef]
- Hu, C.; Muller-Karger, F.E.; Taylor, C.J.; Carder, K.L.; Kelble, C.; Johns, E.; Heil, C.A. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters. Remote Sens. Environ. 2005, 97, 311–321. [Google Scholar] [CrossRef]
- Gower, J. Observations of in situ fluorescence of chlorophyll-a in Saanich Inlet. Bound. Layer Meteorol. 1980, 18, 235–245. [Google Scholar] [CrossRef]
- Richardson, L.L. Remote sensing of algal bloom dynamics. BioScience 1996, 46, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Yin, Q.; Kuang, D. Relationship between Algal Chlorophyll Concentration and Spectral Reflectance of Inland Water (in Chinese with English abstract). J. Remote Sens. 2000, 4, 41–45. [Google Scholar] [CrossRef]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de l’Eclairage Proceedings, 1931; Cambridge University: Cambridge, UK, 1932; pp. 19–29. [Google Scholar]
- Fairman, H.S.; Brill, M.H.; Hemmendinger, H. How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Res. Appl. 1997, 22, 11–23. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, W.; Cao, C.; Zhang, F.; Shen, Q.; Zhang, X.; Zhang, B. A dataset of remote-sensed Forel-Ule Index for global inland waters during 2000–2018. Sci. Data 2021, 8, 26. [Google Scholar] [CrossRef]
- ASTM Standard E308; Standard Practice for Computing the Colors of Objects by Using the CIE System. ASTM Headquarters: West Conshohocken, PA, USA, 2006.
- Kerr, D.A. The CIE XYZ and xyY color spaces. Colorimetry 2010, 1, 1–16. [Google Scholar]
- Wang, S.; Li, J.; Shen, Q.; Zhang, B.; Zhang, F.; Lu, Z. MODIS-based radiometric color extraction and classification of inland water with the Forel-Ule scale: A case study of Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 907–918. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mboga, N.; Georganos, S.; Grippa, T.; Lennert, M.; Vanhuysse, S.; Wolff, E. Fully convolutional networks and geographic object-based image analysis for the classification of VHR imagery. Remote Sens. 2019, 11, 597. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Luo, J.; Lu, L.; Sun, Z.; Cao, Z.; Zeng, Q.; Mao, Z. Changes in aquatic vegetation communities based on satellite images before and after pen aquaculture removal in East Lake Taihu (in Chinese with English abstract). J. Lake Sci. 2021, 33, 11. [Google Scholar] [CrossRef]
- Xia, M.; Wang, T.; Zhang, Y.; Liu, J.; Xu, Y. Cloud/shadow segmentation based on global attention feature fusion residual network for remote sensing imagery. Int. J. Remote Sens. 2021, 42, 2022–2045. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Anderson, H.B.; Van der Wal, R.; Hansen, B.B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity. Environ. Res. Lett. 2018, 13, 025011. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Z.; Chen, B.; Xu, H. Quantitative Ulva prolifera bloom monitoring based on multi-source satellite ocean color remote sensing data. Appl. Ecol. Environ. Res. 2020, 18, 4897–4913. [Google Scholar] [CrossRef]
- Kiage, L.M.; Walker, N.D. Using NDVI from MODIS to monitor duckweed bloom in Lake Maracaibo, Venezuela. Water Resour. Manag. 2009, 23, 1125–1135. [Google Scholar] [CrossRef]
- Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Shi, M.; Shi, Z.; Yin, J.; Zhao, D. Multilevel cloud detection in remote sensing images based on deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3631–3640. [Google Scholar] [CrossRef]
- White, C.H.; Heidinger, A.K.; Ackerman, S.A. Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks. Atmos. Meas. Tech. 2021, 14, 3371–3394. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, D.; Wei, X. Monitoring cyanobacterial harmful algal blooms at high spatiotemporal resolution by fusing Landsat and MODIS imagery. Environ. Adv. 2020, 2, 100008. [Google Scholar] [CrossRef]
- Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci. 2011, 7, 705–732. [Google Scholar] [CrossRef]
- Park, Y.; Lee, H.K.; Shin, J.-K.; Chon, K.; Kim, S.; Cho, K.H.; Kim, J.H.; Baek, S.-S. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir. J. Environ. Manag. 2021, 288, 112415. [Google Scholar] [CrossRef]
- Wernand, M.R.; van der Woerd, H.J.; Gieskes, W.W. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 2013, 8, e63766. [Google Scholar] [CrossRef]
- Bielski, A.; Toś, C. Remote Sensing of the Water Quality Parameters for a Shallow Dam Reservoir. Appl. Sci. 2022, 12, 6734. [Google Scholar] [CrossRef]
- Ramos, C.; Miranda, J.C.; Acum, F.; Pasten, R.; Reyes, R. Red Tide Occurrence and Its Socioeconomic Impacts: Case of the Municipality of Puerto Montt, Chile. Nat. Hazards Rev. 2021, 22, 04020058. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Tomlinson, M.C. Remote sensing of harmful algal blooms. In Remote Sensing of Coastal Aquatic Environments; Springer: Berlin, Germany, 2007; pp. 277–296. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.; Shang, Y.; Ma, J.; Wen, Z.; Du, J. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) algorithm. J. Environ. Inf. 2018, 34, 201700385. [Google Scholar] [CrossRef]
- Boardman, J.W. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: Mixture tuned matched filtering. In Proceedings of the Summaries of the Seventh JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 12–16 January 1998; pp. 55–56. [Google Scholar]
Algorithm Form | Reference | Application Area | Data Source |
---|---|---|---|
Simple band algorithm Rrs(840) Rrs(858.5) and Rrs(858.5) / Rrs(555) Red tide = f(Rrs(912.5) / Rrs(615)) Rrs(555) or Rrs(680) | [33] [34] [35] [36] | Clear Lake, USA Lake Taihu, China West Coast, Canada East Sea, Korea peninsula | Airborne image MODIS AVHRR GOCI |
Decision trees TWI ≥ CMI ≥ FAI SD ≥ TP ≥ pH ≥ DIN CSI ≥ PBL CI ≥ ABM ≥ Median, Sen’s slope, and Kendall’s τ | [27] [37] [38] [39] | Lake Taihu, China 48 ponds, Belgium 156 lakes, USA | MODIS In situ MERIS |
Mixed pixel decomposition Algae pixel-growing algorithm Linear mixing model Improved N-FINDR | [40] [41] [42] [43] | Lake Taihu, China Lake Dianchi, China Part of Yellow Sea | MODIS GOCI HJ-1B |
Supervised/Unsupervised Classification ISODATA clustering Minimum distance classification Maximum likelihood classification | [44] [45] [31] | Moreton Bay, Australia Lake Chaohu, China North Sea, Netherlands | ETM+ MODIS SeaWiFS |
Algae-associated indices Floating algae index Forel-Ule index Chlorophyll-a Visual cyanobacteria index NDVI, EVI | [26] [46] [47] [48] [49] | Western Yellow Sea Global Inland Waters 5 Lakes/Reservoirs, China Ganga River, India 3 Lakes, Japan | MODIS OLI MSI OLCI ETM+ |
Machine learning Neural networks Random forest Support vector machine Long short-term memory | [50] [51] [52] | Bohai Bay, China Han river, South Korea Sea Coast near Florida, USA; Arabian Gulf | AVHRR In situ MODIS GEBCO |
Lakes | Image Time Period | N | |||
---|---|---|---|---|---|
OLI | MODIS | MSI | OLCI | ||
Lake Taihu | 23 October 2013– 22 July 2020 | 29 November 2013– 28 August 2020 | 21 April 2019– 25 August 2020 | 13 September 2016– 20 August 2020 | 84 |
Lake Chaohu | 19 September 2013 | 19 October 2019 26 June 2019 | 19 October 2019 26 June 2019 | 19 October 2019 14 July 2019 | 7 |
Lake Dianchi | 28 July 2020 11 August 2019 28 September 2019 | 8 December 2019 29 October 2019 7 April 2019 | 8 December 2019 29 October 2019 7 April 2019 | 8 December 2019 29 October 2019 7 April 2019 | 12 |
Lake Hulun | 24 July 2017 5 August 2018 21 August 2018 | 7 September 2020 2 August 2019 19 September 2019 | 7 September 2020 4 August 2019 | 7 September 2020 2 August 2020 19 September 2019 | 11 |
Beibu Gulf | 14 February 2021 | 1 | |||
Lesser Slave Lake | 23 September 2013 15 September 2016 | 28 October 2020 20 October 2020 | 1 October 2020 16 September 2020 | 28 October 2020 20 October 2020 | 8 |
Lake Okeechobee | 2 July 2016 8 August 2018 13 July 2020 | 15 October 2020 27 September 2020 14 July 2020 | 15 October 2020 14 July 2020 | 15 October 2020 27 September 2020 14 July 2020 | 11 |
Lake Atitlan | 20 August 2015 | 1 | |||
Lake Kasumigaura | 1 September 2013 | 1 | |||
Lake Beloye | 12 September 2014 19 September 2014 | 8 August 2019 22 July 2019 | 8 August 2019 22 July 2019 | 6 | |
Lake Buir | 12 July 2015 | 9 July 2016 6 October 2016 | 3 |
Sensors | VIS | NIR | SWIR |
---|---|---|---|
OLCI | B1-B12 | B13-B21 | |
OLI | B1-B4 | B5 | B6, B7, B9 |
MODIS | B1, B3, B4 | B2 | B5, B6, B7 |
MSI | B1-B6 | B7-B8A, B9 | B10, B11, B12 |
Sensors | Overall Accuracy | Producer’s Accuracy | User’s Accuracy | Kappa Coefficient |
---|---|---|---|---|
MODIS P-FUI | 98.64% | 98.65% | 98.62% | 0.98 |
NDVI | 77.97% | 78.04% | 80.02% | 0.67 |
FAI | 81.14% | 81.33% | 83.11% | 0.72 |
OLI P-FUI | 97.11% | 96.95% | 97.53% | 0.96 |
NDVI | 71.17% | 72.92% | 74.68% | 0.57 |
EVI | 81.51% | 81.69% | 82.35% | 0.72 |
FAI | 77.99% | 80.00% | 79.83% | 0.67 |
MSI P-FUI | 93.79% | 94.00% | 94.60% | 0.91 |
NDVI | 59.68% | 65.89% | 61.04% | 0.42 |
EVI | 71.71% | 74.90% | 71.34% | 0.58 |
FAI | 64.80% | 69.76% | 66.18% | 0.48 |
OLCI P-FUI | 98.33% | 98.33% | 98.41% | 0.98 |
NDVI | 72.99% | 73.89% | 74.36% | 0.59 |
EVI | 68.27% | 69.50% | 71.86% | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Jing, Y.; Zhang, Y.; Lai, L.; Liu, Z.; Yang, Q. Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color. Remote Sens. 2023, 15, 215. https://doi.org/10.3390/rs15010215
Cao Z, Jing Y, Zhang Y, Lai L, Liu Z, Yang Q. Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color. Remote Sensing. 2023; 15(1):215. https://doi.org/10.3390/rs15010215
Chicago/Turabian StyleCao, Zhen, Yuanyuan Jing, Yuchao Zhang, Lai Lai, Zhaomin Liu, and Qiduo Yang. 2023. "Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color" Remote Sensing 15, no. 1: 215. https://doi.org/10.3390/rs15010215
APA StyleCao, Z., Jing, Y., Zhang, Y., Lai, L., Liu, Z., & Yang, Q. (2023). Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color. Remote Sensing, 15(1), 215. https://doi.org/10.3390/rs15010215