Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Analysis and Optimisation of the Extraction Method
2.1.1. GPP Data and Study Areas
2.1.2. Satellite Data
2.1.3. Fitting Models and Extraction Methods
2.1.4. Evaluation Criteria
2.2. SOS, POS, EOS Analysis in the 2001–2021 Period
2.2.1. Study Areas and Meteorological Time Series
2.2.2. Procedure and Trend Analysis
3. Results
3.1. Optimisation of the Extraction Method
3.2. SOS and POS Trend Analysis (2001–2021)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lieth, H. Phenology and Seasonality Modeling; Springer: New York, NY, USA, 1974. [Google Scholar]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Singh, R.K.; Svystun, T.; AlDahmash, B.; Jönsson, A.M.; Bhalerao, R.P. Photoperiod- and Temperature-Mediated Control of Phenology in Trees—A Molecular Perspective. New Phytol. 2017, 213, 511–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.; Paul, A.; Scheifinger, H.; Rutishauser, T.; Busto, M.; Chmielewski, F.M.; Hájková, L.; et al. Pan European Phenological Database (PEP725): A Single Point of Access for European Data. Int. J. Biometeorol. 2018, 62, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Martz, L.; Lamb, E.G.; Zhao, L.; Guo, X. Comparison of Grassland Phenology Derived from MODIS Satellite and PhenoCam Near-Surface Remote Sensing in North America. Can. J. Remote Sens. 2019, 45, 707–722. [Google Scholar] [CrossRef]
- Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J.; et al. Using Data from Landsat, MODIS, VIIRS and PhenoCams to Monitor the Phenology of California Oak/Grass Savanna and Open Grassland across Spatial Scales. Agric. For. Meteorol. 2017, 237–238, 311–325. [Google Scholar] [CrossRef]
- Dixon, D.J.; Callow, J.N.; Duncan, J.M.A.; Setterfield, S.A.; Pauli, N. Satellite Prediction of Forest Flowering Phenology. Remote Sens. Environ. 2021, 255, 112197. [Google Scholar] [CrossRef]
- Peng, D.; Wang, Y.; Xian, G.; Huete, A.R.; Huang, W.; Shen, M.; Wang, F.; Yu, L.; Liu, L.; Xie, Q.; et al. Investigation of Land Surface Phenology Detections in Shrublands Using Multiple Scale Satellite Data. Remote Sens. Environ. 2021, 252, 112133. [Google Scholar] [CrossRef]
- Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.; Diotri, F.; Busetto, L.; et al. Using Digital Repeat Photography and Eddy Covariance Data to Model Grassland Phenology and Photosynthetic CO2 Uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [Google Scholar] [CrossRef]
- Julitta, T.; Cremonese, E.; Migliavacca, M.; Colombo, R.; Galvagno, M.; Siniscalco, C.; Rossini, M.; Fava, F.; Cogliati, S.; Morra di Cella, U.; et al. Using Digital Camera Images to Analyse Snowmelt and Phenology of a Subalpine Grassland. Agric. For. Meteorol. 2014, 198–199, 116–125. [Google Scholar] [CrossRef]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of Land Surface Phenology from VIIRS Data Using Time Series of PhenoCam Imagery. Agric. For. Meteorol. 2018, 256–257, 137–149. [Google Scholar] [CrossRef]
- Watson, C.J.; Restrepo-Coupe, N.; Huete, A.R. Multi-Scale Phenology of Temperate Grasslands: Improving Monitoring and Management with Near-Surface Phenocams. Front. Environ. Sci. 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Crop Classification from Sentinel-2-Derived Vegetation Indices Using Ensemble Learning. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Gonsamo, A.; Chen, J.M.; David, T.P.; Kurz, W.A.; Wu, C. Land Surface Phenology from Optical Satellite Measurement and CO2 Eddy Covariance Technique. J. Geophys. Res. Biogeosciences 2012, 117, 1–18. [Google Scholar] [CrossRef]
- Tian, F.; Cai, Z.; Jin, H.; Hufkens, K.; Scheifinger, H.; Tagesson, T.; Smets, B.; Van Hoolst, R.; Bonte, K.; Ivits, E.; et al. Calibrating Vegetation Phenology from Sentinel-2 Using Eddy Covariance, PhenoCam, and PEP725 Networks across Europe. Remote Sens. Environ. 2021, 260, 112456. [Google Scholar] [CrossRef]
- Lara, B.; Gandini, M. Assessing the Performance of Smoothing Functions to Estimate Land Surface Phenology on Temperate Grassland. Int. J. Remote Sens. 2016, 37, 1801–1813. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Forkel, M.; Wingate, L.; Tomelleri, E.; Morra di Cella, U.; Richardson, A.D. Phenopix: A R Package for Image-Based Vegetation Phenology. Agric. For. Meteorol. 2016, 220, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between Gross Primary Production and Chlorophyll Content in Crops: Implications for the Synoptic Monitoring of Vegetation Productivity. J. Geophys. Res. Atmos. 2006, 111, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Zhang, C.; Ju, W.; Wang, X.; Chen, Z.; Fang, B. Improved Modeling of Gross Primary Productivity (GPP) by Better Representation of Plant Phenological Indicators from Remote Sensing Using a Process Model. Ecol. Indic. 2018, 88, 332–340. [Google Scholar] [CrossRef]
- Fu, Y.S.H.; Campioli, M.; Vitasse, Y.; De Boeck, H.J.; Van Den Berge, J.; AbdElgawad, H.; Asard, H.; Piao, S.; Deckmyn, G.; Janssens, I.A. Variation in Leaf Flushing Date Influences Autumnal Senescence and Next Year’s Flushing Date in Two Temperate Tree Species. Proc. Natl. Acad. Sci. USA 2014, 111, 7355–7360. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Y.-B.; Lyapustin, A.I.; Wang, Y.; Xiao, X.; Suyker, A.; Verma, S.; Tan, B.; Middleton, E.M. Estimation of Crop Gross Primary Production (GPP): I. Impact of MODIS Observation Footprint and Impact of Vegetation BRDF Characteristics. Agric. For. Meteorol. 2014, 191, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zhang, X.; Wu, C.; Huang, W.; Gonsamo, A.; Huete, A.R.; Didan, K.; Tan, B.; Liu, X.; Zhang, B. Intercomparison and Evaluation of Spring Phenology Products Using National Phenology Network and AmeriFlux Observations in the Contiguous United States. Agric. For. Meteorol. 2017, 242, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Medlyn, B.E. Physiological Basis of the Light Use Efficiency Model. Tree Physiol. 1998, 18, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Galvagno, M.; Wohlfahrt, G.; Cremonese, E.; Rossini, M.; Colombo, R.; Filippa, G.; Julitta, T.; Manca, G.; Siniscalco, C.; Morra di Cella, U.; et al. Phenology and Carbon Dioxide Source/Sink Strength of a Subalpine Grassland in Response to an Exceptionally Short Snow Season. Environ. Res. Lett. 2013, 8, 025008. [Google Scholar] [CrossRef]
- Jin, H.; Jönsson, A.M.; Bolmgren, K.; Langvall, O.; Eklundh, L. Disentangling Remotely-Sensed Plant Phenology and Snow Seasonality at Northern Europe Using MODIS and the Plant Phenology Index. Remote Sens. Environ. 2017, 198, 203–212. [Google Scholar] [CrossRef]
- Jin, H.; Eklundh, L. A Physically Based Vegetation Index for Improved Monitoring of Plant Phenology. Remote Sens. Environ. 2014, 152, 512–525. [Google Scholar] [CrossRef]
- Sparks, T.; Menzel, A. Plant Phenology Changes and Climate Change. In Encyclopedia of Biodiversity; Academic Press: New York, NY, USA, 2013; pp. 103–108. ISBN 9780123847201. [Google Scholar]
- Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- FAO Statistical Yearbook 2013. World Food and Agriculture; Food and Agriculture Organization for the United Nations: Rome, Italy, 2013.
- Ni, J. Carbon Storage in Grasslands of China. J. Arid Environ. 2002, 50, 205–218. [Google Scholar] [CrossRef]
- Ponzetta, M.P.; Cervasio, F.; Crocetti, C.; Messeri, A.; Argenti, G. Habitat Improvements with Wildlife Purposes in a Grazed Area on the Apennine Mountains. Ital. J. Agron. 2010, 5, 233–238. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of Changes in Climate and Landscape Pattern on Ecosystem Services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, 1–20. [Google Scholar] [CrossRef]
- Dibari, C.; Costafreda-Aumedes, S.; Argenti, G.; Bindi, M.; Carotenuto, F.; Moriondo, M.; Padovan, G.; Pardini, A.; Staglianò, N.; Vagnoli, C.; et al. Expected Changes to Alpine Pastures in Extent and Composition under Future Climate Conditions. Agronomy 2020, 10, 926. [Google Scholar] [CrossRef]
- Menzel, A.; Yuan, Y.; Matiu, M.; Sparks, T.; Scheifinger, H.; Gehrig, R.; Estrella, N. Climate Change Fingerprints in Recent European Plant Phenology. Glob. Chang. Biol. 2020, 26, 2599–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y. MODIS Normalized Difference Vegetation Index (NDVI) and Vegetation Phenology Dynamics in the Inner Mongolia Grassland. Solid Earth 2015, 6, 1185–1194. [Google Scholar] [CrossRef] [Green Version]
- Stöckli, R.; Vidale, P.L. European Plant Phenology and Climate as Seen in a 20-Year AVHRR Land-Surface Parameter Dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 Dataset and the ONEFlux Processing Pipeline for Eddy Covariance Data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Estimate of Vegetation Production of Terrestrial Ecosystem. In Advanced Remote Sensing, 2nd ed.; Academic Press: New York, NY, USA, 2020; ISBN 9780128158265.
- Wohlfahrt, G.; Hammerle, A.; Haslwanter, A.; Bahn, M.; Tappeiner, U.; Cernusca, A. Seasonal and Inter-Annual Variability of the Net Ecosystem CO2 Exchange of a Temperate Mountain Grassland: Effects of Weather and Management. J. Geophys. Res. Atmos. 2008, 113, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merbold, L.; Eugster, W.; Stieger, J.; Zahniser, M.; Nelson, D.; Buchmann, N. Greenhouse Gas Budget (CO2, CH4 and N2O) of Intensively Managed Grassland Following Restoration. Glob. Chang. Biol. 2014, 20, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Imer, D.; Merbold, L.; Eugster, W.; Buchmann, N. Temporal and Spatial Variations of Soil CO2, CH4 and N2O Fluxes at Three Differently Managed Grasslands. Biogeosciences 2013, 10, 5931–5945. [Google Scholar] [CrossRef] [Green Version]
- Prescher, A.K.; Grünwald, T.; Bernhofer, C. Land Use Regulates Carbon Budgets in Eastern Germany: From NEE to NBP. Agric. For. Meteorol. 2010, 150, 1016–1025. [Google Scholar] [CrossRef]
- Post, H.; Franssen, H.J.H.; Graf, A.; Schmidt, M.; Vereecken, H. Uncertainty Analysis of Eddy Covariance CO2 Flux Measurements for Different EC Tower Distances Using an Extended Two-Tower Approach. Biogeosciences 2015, 12, 1205–1221. [Google Scholar] [CrossRef]
- Marcolla, B.; Cescatti, A.; Manca, G.; Zorer, R.; Cavagna, M.; Fiora, A.; Gianelle, D.; Rodeghiero, M.; Sottocornola, M.; Zampedri, R. Climatic Controls and Ecosystem Responses Drive the Inter-Annual Variability of the Net Ecosystem Exchange of an Alpine Meadow. Agric. For. Meteorol. 2011, 151, 1233–1243. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A Unified Vegetation Index for Quantifying the Terrestrial Biosphere. Sci. Adv. 2021, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D. Landscape Controls on the Timing of Spring, Autumn, and Growing Season Length in Mid-Atlantic Forests. Glob. Chang. Biol. 2012, 18, 656–674. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Post, W.; Baldocchi, D.D.; Black, T.; Suyker, A.; Verma, S.; Vesala, T.; Wofsy, S. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis across a Range of Vegetation Types. In Phenology of Ecosystem Processes; Springer: New York, NY, USA, 2009; pp. 35–58. [Google Scholar]
- Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved Monitoring of Vegetation Dynamics at Very High Latitudes: A New Method Using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenoCam Imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef] [Green Version]
- Kline, M. Calculus: An Intuitive and Physical Approach, 2nd ed.; Dover Publications: Mineola, NY, USA, 1998. [Google Scholar]
- Zheng, Z.; Zhu, W. Uncertainty of Remote Sensing Data in Monitoring Vegetation Phenology: A Comparison of MODIS C5 and C6 Vegetation Index Products on the Tibetan Plateau. Remote Sens. 2017, 9, 1288. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhou, G.; Du, H.; Mao, F.; Xu, L.; Li, X.; Liu, L. Combined MODIS Land Surface Temperature and Greenness Data for Modeling Vegetation Phenology, Physiology, and Gross Primary Production in Terrestrial Ecosystems. Sci. Total Environ. 2020, 726, 137948. [Google Scholar] [CrossRef]
- Ren, S.; Vitasse, Y.; Chen, X.; Peichl, M.; An, S. Assessing the Relative Importance of Sunshine, Temperature, Precipitation, and Spring Phenology in Regulating Leaf Senescence Timing of Herbaceous Species in China. Agric. For. Meteorol. 2022, 313, 108770. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982–2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Badeck, F.W.; Bondeau, A.; Böttcher, K.; Doktor, D.; Lucht, W.; Schaber, J.; Sitch, S. Responses of Spring Phenology to Climate Change. New Phytol. 2004, 162, 295–309. [Google Scholar] [CrossRef]
- Xu, H.; Twine, T.E.; Yang, X. Evaluating Remotely Sensed Phenological Metrics in a Dynamic Ecosystem Model. Remote Sens. 2014, 6, 4660–4686. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; Lafleur, P.M.; Peichl, M.; Gonsamo, A.; et al. Land Surface Phenology Derived from Normalized Difference Vegetation Index (NDVI) at Global FLUXNET Sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Gallinat, A.S.; Primack, R.B.; Wagner, D.L. Autumn, the Neglected Season in Climate Change Research. Trends Ecol. Evol. 2015, 30, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Adu, B.; Qin, G.; Li, C.; Wu, J. Grassland Phenology’s Sensitivity to Extreme Climate Indices in the Sichuan Province, Western China. Atmosphere 2021, 12, 1650. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Li, S.; Zhang, J.; Ni, X. The Different Impacts of the Daytime and Nighttime Land Surface Temperatures on the Alpine Grassland Phenology. Ecosphere 2021, 12, e03578. [Google Scholar] [CrossRef]
- Ren, S.; Li, Y.; Peichl, M. Diverse Effects of Climate at Different Times on Grassland Phenology in Mid-Latitude of the Northern Hemisphere. Ecol. Indic. 2020, 113, 106260. [Google Scholar] [CrossRef]
- Hou, X.; Gao, S.; Niu, Z.; Xu, Z. Extracting Grassland Vegetation Phenology in North China Based on Cumulative SPOT-VEGETATION NDVI Data. Int. J. Remote Sens. 2014, 35, 3316–3330. [Google Scholar] [CrossRef]
- Sadras, V.O.; Monzon, J.P. Modelled Wheat Phenology Captures Rising Temperature Trends: Shortened Time to Flowering and Maturity in Australia and Argentina. Field Crop. Res. 2006, 99, 136–146. [Google Scholar] [CrossRef]
- Sadras, V.O.; Moran, M.A. Agricultural and Forest Meteorology Nonlinear Effects of Elevated Temperature on Grapevine Phenology. Agric. For. Meteorol. 2013, 173, 107–115. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chiariello, N.R.; Loarie, S.R.; Mooney, H.A.; Field, C.B. Diverse Responses of Phenology to Global Changes in a Grassland Ecosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 13740–13744. [Google Scholar] [CrossRef]
- Hua, X.; Sirguey, P.; Ohlemüller, R. Recent Trends in the Timing of the Growing Season in New Zealand’s Natural and Semi-Natural Grasslands. GIScience Remote Sens. 2021, 58, 1090–1111. [Google Scholar] [CrossRef]
- Ganjurjav, H.; Gornish, E.S.; Hu, G.; Wan, Y.; Li, Y.; Danjiu, L.; Gao, Q. Temperature Leads to Annual Changes of Plant Community Composition in Alpine Grasslands on the Qinghai-Tibetan Plateau. Environ. Monit. Assess. 2018, 190, 585. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Ursenbacher, S.; Klein, G.; Bohnenstengel, T.; Chittaro, Y.; Delestrade, A.; Monnerat, C.; Rebetez, M.; Rixen, C.; Strebel, N.; et al. Phenological and Elevational Shifts of Plants, Animals and Fungi under Climate Change in the European Alps. Biol. Rev. Camb. Philos. Soc. 2021, 41, 1816–1835. [Google Scholar] [CrossRef] [PubMed]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. Chapter 2: High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2019; pp. 131–202. [Google Scholar]
- Klein, G. Unchanged Risk of Frost Exposure for Subalpine and Alpine Plants after Snowmelt in Switzerland despite Climate Warming. Int. J. Biometeorol. 2018, 62, 1755–1762. [Google Scholar] [CrossRef]
- Körner, C. Life under and in Snow: Protection and Limitation. In Alpine Plant Life; Springer: Cham, Switzerland, 2021; ISBN 9783030595371. [Google Scholar]
- Vorkauf, M.; Kahmen, A.; Körner, C.; Hiltbrunner, E. Flowering Phenology in Alpine Grassland Strongly Responds to Shifts in Snowmelt but Weakly to Summer Drought. Alp. Bot. 2021, 131, 73–88. [Google Scholar] [CrossRef]
- Grippa, M.; Kergoat, L.; Toan, T.L.; Mognard, N.M.; Delbart, N.; Hermitte, J.L. The Impact of Snow Depth and Snowmelt on the Vegetation Variability over Central Siberia. Geophys. Res. Lett. 2005, 32, 2–5. [Google Scholar] [CrossRef]
- Xie, J.; Hüsler, F.; de Jong, R.; Chimani, B.; Asam, S. Spring Temperature and Snow Cover Climatology Drive the Advanced Springtime Phenology (1991–2014) in the European Alps. J. Geophys. Res. Biogeosciences 2021, 126, e2020JG006150. [Google Scholar] [CrossRef]
- Jerome, D.K.; Petry, W.K.; Mooney, K.A.; Iler, A.M. Snow Melt Timing Acts Independently and in Conjunction with Temperature Accumulation to Drive Subalpine Plant Phenology. Glob. Chang. Biol. 2021, 27, 5054–5069. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, X.; Wang, Y.; Fu, Y.; Yan, H.; Qian, S.; Cheng, L. Drivers of Phenology Shifts and Their Effect on Productivity in Northern Grassland of China during 1984–2017—Evidence from Long-Term Observational Data. Int. J. Biometeorol. 2021, 65, 527–539. [Google Scholar] [CrossRef]
- Weisberg, P.J.; Dilts, T.E.; Greenberg, J.A.; Johnson, K.N.; Pai, H.; Sladek, C.; Kratt, C.; Tyler, S.W.; Ready, A. Phenology-Based Classification of Invasive Annual Grasses to the Species Level. Remote Sens. Environ. 2021, 263, 112568. [Google Scholar] [CrossRef]
- Mutanga, O.; Shoko, C. Monitoring the Spatio-Temporal Variations of C3/C4 Grass Species Using Multispectral Satellite Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8988–8991. [Google Scholar] [CrossRef]
- Castillioni, K.; Newman, G.S.; Souza, L.; Iler, A.M. Effects of Drought on Grassland Phenology Depend on Functional Types. New Phytol. 2022, 236, 1558–1571. [Google Scholar] [CrossRef] [PubMed]
- Weil, G.; Lensky, I.M.; Levin, N. Using Ground Observations of a Digital Camera in the VIS-NIR Range for Quantifying the Phenology of Mediterranean Woody Species. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 88–101. [Google Scholar] [CrossRef]
- Dibari, C.; Pulina, A.; Argenti, G.; Aglietti, C.; Bindi, M.; Moriondo, M.; Mula, L.; Pasqui, M.; Seddaiu, G.; Roggero, P.P. Climate Change Impacts on the Alpine, Continental and Mediterranean Grassland Systems of Italy: A Review. Ital. J. Agron. 2021, 16, 1843. [Google Scholar] [CrossRef]
ID | Site | Country | Network | Lat | Lon | Mamsl | Years |
---|---|---|---|---|---|---|---|
AT-Neu | Neustift [41] | Austria | FLUXNET | 47.1167 | 11.3175 | 970 | 2002–2012 |
CH-Cha | Chamau [42] | Switzerland | FLUXNET | 47.2102 | 8.4104 | 393 | 2002–2008 |
CH-Fru | Früebüel [43] | Switzerland | FLUXNET | 47.1158 | 8.5378 | 982 | 2005–2014 |
CZ-BK2 | Bily Kriz | Czech Republic | FLUXNET | 49.4944 | 18.5429 | 855 | 2006–2012 |
DE-Gri | Grillenburg [44] | Germany | FLUXNET | 50.9500 | 13.5126 | 385 | 2004–2018 |
DE-Rur | Rollesbroich [45] | Germany | FLUXNET | 50.6219 | 6.3041 | 514 | 2011–2018 |
IT-Mal | Malga Arpaco | Italy | EFDC | 46.1140 | 11.70334 | 1662 | 2003–2004 |
IT-Mbo | Monte Bondone [46] | Italy | FLUXNET | 46.0147 | 11.0458 | 1550 | 2004–2013 |
IT-Tor | Torgnon [25] | Italy | FLUXNET | 45.8444 | 7.5781 | 2160 | 2009–2018 |
Site ID | Country | Latitude | Longitude | Altitude | Meteo Station | Meteo Years |
---|---|---|---|---|---|---|
AUS1 | Austria | 46.7782°N | 14.9746°E | 1740 | Feistritz Ob Bleiburg | 2008–2021 |
AUS2 | Austria | 47.0373°N | 11.2085°E | 1931 | Obergurgl | 2002–2021 |
BOS | Bosnia | 44.2219°N | 16.5075°E | 1092 | Livno | 2001–2021 |
BUL | Bulgaria | 42.1875°N | 23.2977°E | 2434 | Mussala Top Sommet | 2001–2021 |
CZE | Czech Republic | 48.5850°N | 14.3765°E | 642 | Budejovice Roznov | 2001–2021 |
DEN | Denmark | 56.1995°N | 10.5378°E | 40 | Aarhus | 2001–2021 |
FRA1 | France | 45.5949°N | 6.6931°E | 1812 | Bourg St Maurice | 2001–2021 |
FRA2 | France | 45.1842°N | 2.7997°E | 1169 | Aurillac | 2001–2021 |
FRA3 | France | 42.2984°N | 9.0294°E | 1125 | Ile Rousse | 2001–2021 |
GEO | Georgia | 42.6512°N | 44.601°E | 2258 | Pasanauri | 2004–2016 |
GER1 | Germany | 50.7660°N | 10.7831°E | 518 | Erfurt | 2005–2021 |
GER2 | Germany | 51.7090°N | 10.5377°E | 697 | Fritzlar | 2001–2021 |
HUN | Hungary | 47.4892°N | 20.9926°E | 276 | Debrecen | 2001–2021 |
ITA1 | Italy | 45.1806°N | 7.2695°E | 1975 | Bousson | 2006–2021 |
ITA2 | Italy | 45.6908°N | 11.0631°E | 1576 | Paganella Mountain | 2001–2021 |
ITA3 | Italy | 42.4005°N | 13.6756°E | 1623 | No station | |
ITA4 | Italy | 40.0129°N | 9.3181°E | 1464 | Perdasdefogu | 2006–2021 |
LAT | Latvia | 57.5046°N | 27.3139°E | 581 | Aluksne | 2004–2020 |
POL | Poland | 50.4299°N | 16.3272°E | 630 | Klodzko | 2001–2021 |
ROM | Romania | 46.8456°N | 25.1027°E | 1192 | Batos | 2014–2021 |
RUS1 | Russia | 53.6425°N | 35.5488°E | 165 | Bryansk | 2001–2021 |
RUS2 | Russia | 43.2756°N | 41.6877°E | 2544 | Teberda | 2013–2020 |
SCO | Scotland | 56.5194°N | 4.2276°W | 559 | Glen Ogle | 2001–2021 |
SLK | Slovakia | 49.1370°N | 20.2007°E | 1357 | No station | |
SLV | Slovenia | 46.4887°N | 14.0553°E | 1238 | Ratece | 2013–2021 |
SPA1 | Spain | 43.0329°N | 1.147°W | 992 | Pamplona | 2001–2021 |
SPA2 | Spain | 42.5973°N | 0.0713°E | 1759 | No station | |
SWE | Sweden | 64.9977°N | 14.5455°E | 854 | Stekenjokk | 2002–2021 |
SWI1 | Switzerland | 46.9242°N | 6.7304°E | 1219 | Bullet La Fretaz | 2002–2021 |
SWI2 | Switzerland | 46.9014°N | 8.9249°E | 1749 | Disentis Sedrun | 2001–2021 |
TUR | Turkey | 41.2610°N | 42.5550°E | 2524 | Ardahan | 2009–2021 |
SOS | POS | EOS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ELM | GU | BEC | KLS | ELM | GU | BEC | KLS | ELM | GU | BEC | KLS | ||
GU | MAE | 15.2 | 17.1 | 15.2 | 17.4 | 13.4 | 14.4 | 13.9 | 12.5 | 19.2 | 21.6 | 25.3 | 24.7 |
R2 | 0.76 | 0.74 | 0.75 | 0.83 | 0.66 | 0.62 | 0.54 | 0.56 | 0.08 | 0.06 | 0.00 | 0.05 | |
AIC | 627 | 671 | 647 | 577 | 647 | 652 | 651 | 614 | 533 | 595 | 527 | 496 | |
RMSE | 19.2 | 21.5 | 20.0 | 20.7 | 18.5 | 19.3 | 19.3 | 18.0 | 26.0 | 26.3 | 29.2 | 29.7 | |
pp | 93 | 96 | 94 | 88 | 91 | 93 | 93 | 88 | 77 | 83 | 73 | 72 | |
DER | MAE | 15.0 | 16.9 | 14.2 | 12.6 | 16.2 | 28.6 | 23.8 | 16.8 | 18.8 | 35.8 | 39.5 | 36.3 |
R2 | 0.63 | 0.69 | 0.73 | 0.77 | 0.55 | 0.49 | 0.30 | 0.61 | 0.09 | 0.05 | 0.12 | 0.16 | |
AIC | 682 | 668 | 674 | 568 | 512 | 480 | 530 | 416 | 557 | 498 | 560 | 479 | |
RMSE | 21.1 | 21.9 | 17.8 | 16.3 | 21.1 | 34.6 | 30.2 | 23.7 | 25.4 | 40.6 | 43.1 | 40.1 | |
pp | 95 | 95 | 99 | 86 | 73 | 64 | 69 | 56 | 79 | 69 | 80 | 72 | |
KLS | MAE | 17.4 | 15.0 | 13.9 | 19.5 | 10.3 | 15.8 | 13.9 | 13.6 | 22.6 | 23.3 | 24.1 | 27.1 |
R2 | 0.85 | 0.73 | 0.57 | 0.6 | 0.89 | 0.57 | 0.57 | 0.71 | 0.00 | 0.00 | 0.02 | 0.17 | |
AIC | 116 | 300 | 582 | 505 | 110 | 345 | 582 | 431 | 104 | 222 | 458 | 351 | |
RMSE | 21.5 | 18.2 | 19.0 | 24.0 | 13.1 | 22.2 | 19.0 | 19.3 | 33.1 | 29.5 | 28.65 | 32.7 | |
pp | 17 | 46 | 83 | 69 | 16 | 47 | 83 | 60 | 16 | 30 | 64 | 47 | |
TRS0.1 | MAE | 15.4 | 19.4 | 21.0 | 19.2 | 16.2 | 28.5 | 23.8 | 16.8 | 21.1 | 21.5 | 22.9 | 24.4 |
R2 | 0.35 | 0.57 | 0.56 | 0.51 | 0.55 | 0.49 | 0.30 | 0.61 | 0.06 | 0.06 | 0.00 | 0.00 | |
AIC | 635 | 612 | 651 | 598 | 512 | 480 | 530 | 416 | 589 | 302 | 325 | 235 | |
RMSE | 19.3 | 24.1 | 25.7 | 24.3 | 21.06 | 34.6 | 30.2 | 23.7 | 26.5 | 26.0 | 28.0 | 30.0 | |
pp | 91 | 83 | 94 | 81 | 73 | 64 | 69 | 56 | 84 | 46 | 48 | 33 | |
TRS0.2 | MAE | 14.0 | 14.8 | 13.6 | 15.8 | - | - | - | - | 22.8 | 21.9 | 24.9 | 25.9 |
R2 | 0.78 | 0.79 | 0.79 | 0.91 | - | - | - | - | 0.14 | 0.14 | 0.01 | 0.09 | |
AIC | 609 | 611 | 625 | 497 | - | - | - | - | 588 | 498 | 583 | 459 | |
RMSE | 17.7 | 19.7 | 17.6 | 19.5 | 28.3 | 27.0 | 30.4 | 30.2 | |||||
pp | 91 | 89 | 94 | 75 | - | - | - | - | 85 | 72 | 80 | 68 | |
TRS0.3 | MAE | 13.6 | 15.0 | 12.9 | 14.6 | - | - | - | - | 27.5 | 29.4 | 28.9 | 31.6 |
R2 | 0.82 | 0.85 | 0.80 | 0.86 | - | - | - | - | 0.12 | 0.16 | 0.07 | 0.15 | |
AIC | 599 | 593 | 627 | 553 | - | - | - | - | 588 | 547 | 548 | 529 | |
RMSE | 16.9 | 19.0 | 16.2 | 17.9 | 32.0 | 33.8 | 33.9 | 35.8 | |||||
pp | 91 | 90 | 95 | 86 | - | - | - | - | 85 | 79 | 78 | 78 | |
TRS0.4 | MAE | 13.7 | 14.9 | 12.8 | 13.3 | - | - | - | - | 34.2 | 36.1 | 35.5 | 36.6 |
R2 | 0.80 | 0.81 | 0.79 | 0.80 | - | - | - | - | 0.10 | 0.22 | 0.14 | 0.22 | |
AIC | 629 | 624 | 626 | 580 | - | - | - | - | 569 | 574 | 545 | 522 | |
RMSE | 18.1 | 19.3 | 15.9 | 16.7 | 38.4 | 39.4 | 39.1 | 39.8 | |||||
pp | 94 | 93 | 95 | 88 | - | - | - | - | 83 | 83 | 79 | 78 | |
TRS0.5 | MAE | 13.7 | 15.7 | 13.3 | 12.6 | - | - | - | - | 39.8 | 42.0 | 40.3 | 40.3 |
R2 | 0.73 | 0.69 | 0.76 | 0.76 | - | - | - | - | 0.12 | 0.21 | 0.21 | 0.19 | |
AIC | 652 | 674 | 648 | 566 | - | - | - | - | 523 | 567 | 527 | 505 | |
RMSE | 18.6 | 20.5 | 17.1 | 16.7 | 43.5 | 45.0 | 43.1 | 43.6 | |||||
pp | 94 | 95 | 96 | 84 | - | - | - | - | 75 | 81 | 78 | 74 |
SOS | POS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | Mean | R | Days | Sign. | Pp | Mean | R | Days | Sign. | Pp |
AUS1 | 139.32 | −0.43 | −15.89 | 0.06 | 0.9 | 169.35 | −0.25 | −4.54 | 0.3 | 0.95 |
AUS2 | 159.3 | −0.66 | −17.51 | <0.01 | 0.95 | 187.16 | −0.52 | −14.02 | 0.03 | 0.9 |
BOS | 116.05 | −0.68 | −10.08 | <0.01 | 0.9 | 157.52 | −0.4 | −9.93 | 0.09 | 1 |
BUL | 172.7 | −0.17 | −3.77 | 0.48 | 0.95 | 197.9 | −0.11 | −5.53 | 0.65 | 0.95 |
CZE | 85.16 | −0.66 | −13.88 | <0.01 | 0.9 | 129.68 | −0.52 | −17.2 | 0.02 | 0.9 |
DEN | 91.63 | −0.74 | −42 | <0.01 | 0.86 | 124.18 | −0.44 | −14.31 | 0.06 | 0.81 |
FRA1 | 124.3 | −0.34 | −4.42 | 0.15 | 0.95 | 154.19 | 0.5 | 4.44 | 0.03 | 0.95 |
FRA2 | 94.47 | −0.61 | −20.6 | <0.01 | 0.9 | 140.42 | −0.4 | −6.66 | 0.09 | 0.9 |
FRA3 | 97.5 | −0.61 | −15.99 | <0.01 | 0.95 | 130.85 | −0.12 | −3.57 | 0.64 | 0.95 |
GEO | 148.95 | −0.47 | −5.55 | 0.04 | 0.95 | 177.65 | −0.4 | −7.42 | 0.1 | 0.95 |
GER1 | 84.75 | −0.01 | −0.42 | 0.96 | 0.76 | 117.67 | −0.15 | −5.47 | 0.53 | 0.86 |
GER2 | 99.05 | −0.48 | −14.76 | 0.04 | 0.9 | 131.48 | −0.62 | −27.73 | <0.01 | 1 |
HUN | 69.23 | −0.65 | −22.95 | <0.01 | 0.65 | 154.11 | 0 | −12.02 | 0.74 | 0.95 |
ITA1 | 138.84 | −0.07 | −2.42 | 0.77 | 0.9 | 167.9 | 0.17 | 4.51 | 0.49 | 0.95 |
ITA2 | 136.95 | 0.22 | 4.3 | 0.36 | 0.95 | 165.65 | 0.5 | 6.8 | 0.03 | 0.95 |
ITA3 | 11.56 | −0.77 | −25.14 | <0.01 | 0.86 | 143 | 0.22 | 5.28 | 0.36 | 0.95 |
ITA4 | 107.35 | 0.08 | 1.71 | 0.73 | 0.81 | 128.05 | −0.2 | −5.74 | 0.41 | 1 |
LAT | 113.11 | −0.11 | −1.12 | 0.65 | 0.9 | 146.35 | −0.89 | −27.1 | <0.01 | 0.95 |
POL | 102.58 | −0.43 | −14.06 | 0.07 | 0.9 | 138.8 | −0.4 | −10.82 | 0.09 | 0.95 |
ROM | 128 | 0.22 | 6.64 | 0.38 | 0.95 | 166.85 | 0.07 | 1.58 | 0.78 | 0.95 |
RUS1 | 119.26 | −0.39 | −6.56 | 0.1 | 0.9 | 149.94 | −0.24 | −6.37 | 0.33 | 0.81 |
RUS2 | 148 | −0.52 | −7.59 | 0.02 | 0.95 | 181.76 | −0.64 | −13.49 | <0.01 | 1 |
SCO | 125.2 | −0.34 | −31.05 | 0.16 | 0.95 | 161.39 | 0.13 | 7.21 | 0.61 | 0.86 |
SLK | 122.76 | −0.66 | −20.52 | <0.01 | 0.81 | 157.82 | 0.37 | 17.35 | 0.18 | 0.81 |
SLV | 130 | −0.54 | −13.89 | 0.02 | 0.86 | 164.25 | −0.4 | −8.3 | 0.09 | 0.9 |
SPA1 | 88.28 | 0.32 | 11.75 | 0.18 | 0.9 | 155.21 | 0.37 | 15.1 | 0.12 | 0.9 |
SPA2 | 125.67 | 0 | −0.05 | 0.99 | 1 | 154.89 | −0.24 | −3.86 | 0.32 | 0.9 |
SWE | 172.21 | −0.02 | −0.5 | 0.94 | 0.9 | 191.53 | −0.55 | −19.62 | 0.02 | 0.9 |
SWI1 | 110.35 | −0.7 | −12.11 | <0.01 | 0.95 | 135.04 | 0.19 | 3.78 | 0.44 | 0.95 |
SWI2 | 124.6 | 0.32 | 7.37 | 0.17 | 0.95 | 152.86 | −0.33 | −11.51 | 0.17 | 1 |
TUR | 151.8 | −0.55 | −7.4 | 0.02 | 0.95 | 185.9 | −0.55 | −9.54 | <0.01 | 0.95 |
Winter | Spring | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | T Mean | R Years | Sign. | R SOS | Sign. | T Mean | R Years | Sign. | R SOS | Sign. | R POS | Sign. |
AUS1 | 1.12 | 0.78 | <0.01 | −0.51 | 0.09 | 13.93 | −0.11 | 0.74 | −0.41 | 0.19 | −0.22 | 0.5 |
AUS2 | −4.15 | 0.72 | <0.01 | −0.36 | 0.16 | 5.9 | 0 | 0.99 | −0.03 | 0.91 | −0.52 | 0.03 |
BOS | 3.73 | 0.74 | <0.01 | −0.63 | 0.01 | 16.1 | 0.62 | 0.01 | −0.61 | 0.01 | −0.64 | 0.01 |
BUL | −9.07 | 0.68 | <0.01 | −0.28 | 0.25 | −0.22 | 0.47 | 0.04 | −0.16 | 0.51 | 0.18 | 0.45 |
CZE | 1.73 | 0.66 | <0.01 | −0.55 | 0.02 | 13.82 | 0.33 | 0.18 | - | - | −0.3 | 0.23 |
DEN | 2.16 | 0.72 | <0.01 | −0.64 | <0.01 | 11.44 | 0.76 | <0.01 | −0.29 | 0.24 | −0.62 | <0.01 |
FRA1 | 2.33 | 0.56 | 0.01 | −0.27 | 0.27 | 13.79 | 0.05 | 0.84 | −0.57 | 0.01 | −0.06 | 0.82 |
FRA2 | 4 | 0.36 | 0.13 | −0.67 | <0.01 | 12.93 | −0.24 | 0.32 | −0.17 | 0.48 | 0.09 | 0.72 |
FRA3 | 10.82 | 0.65 | <0.01 | −0.08 | 0.75 | 18.07 | 0.11 | 0.65 | 0.09 | 0.71 | −0.49 | 0.03 |
GEO | 0.06 | 0.25 | 0.43 | 0.02 | 0.95 | 13.22 | −0.01 | 0.97 | −0.29 | 0.34 | 0.15 | 0.62 |
GER1 | 1.91 | 0.46 | 0.08 | −0.03 | 0.91 | 12.92 | 0.24 | 0.39 | - | - | −0.41 | 0.13 |
GER2 | 2.77 | 0.3 | 0.21 | 0 | 1 | 13.15 | 0.12 | 0.63 | −0.32 | 0.18 | 0 | 0.99 |
HUN | 2.26 | 0.61 | 0.01 | −0.31 | 0.27 | 16.45 | 0.36 | 0.13 | - | - | 0.04 | 0.87 |
ITA1 a | −0.24 | - | - | - | - | 9.46 | - | - | - | - | - | - |
ITA2 | −3.83 | 0.1 | 0.67 | 0.02 | 0.93 | 4.94 | −0.36 | 0.13 | −0.04 | 0.88 | −0.16 | 0.52 |
ITA3 b | - | - | - | - | - | - | - | - | - | - | - | - |
ITA4 | 8.17 | 0.67 | 0.01 | 0.32 | 0.27 | 17.48 | −0.07 | 0.82 | −0.35 | 0.22 | −0.56 | 0.04 |
LAT | −3.92 | 0.53 | 0.04 | −0.52 | 0.05 | 10.8 | 0.51 | 0.05 | −0.53 | 0.04 | −0.55 | 0.03 |
POL | −0.32 | 0.53 | 0.02 | −0.32 | 0.18 | 12.32 | 0.23 | 0.34 | −0.57 | 0.01 | −0.55 | 0.02 |
ROM a | 1.88 | - | - | - | - | 15.02 | - | - | - | - | - | - |
RUS1 | −3.57 | 0.48 | 0.04 | −0.33 | 0.17 | 14.09 | 0.44 | 0.06 | −0.28 | 0.25 | −0.74 | <0.01 |
RUS2 a | 1.24 | - | - | - | - | 11.53 | - | - | - | - | - | - |
SCO | 1.22 | −0.37 | 0.12 | −0.18 | 0.47 | 6.71 | 0.24 | −0.31 | −0.14 | 0.56 | −0.47 | 0.05 |
SLK b | - | - | - | - | - | - | - | - | - | - | - | - |
SLV a | −0.25 | - | - | - | - | 11.69 | - | - | - | - | - | - |
SPA1 | 7.08 | −0.11 | 0.66 | 0.08 | 0.74 | 15.48 | −0.87 | <0.001 | - | - | −0.45 | 0.05 |
SPA2 b | - | - | - | - | - | - | - | - | - | - | - | - |
SWE | −8.69 | 0.03 | 0.89 | 0.24 | 0.34 | 1 | −0.34 | 0.17 | −0.69 | <0.00 | −0.2 | 0.43 |
SWI1 | −0.1 | 0.63 | <0.001 | −0.56 | 0.02 | 9.37 | 0.17 | 0.51 | −0.46 | 0.06 | −0.15 | 0.55 |
SWI2 | 0.15 | 0.52 | 0.02 | 0.01 | 0.97 | 10.51 | 0.03 | 0.92 | −0.16 | 0.51 | −0.02 | 0.92 |
TUR a | −3.43 | - | - | - | - | 13.17 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, E.; Moriondo, M.; Dibari, C.; Leolini, L.; Staglianò, N.; Stendardi, L.; Filippa, G.; Galvagno, M.; Argenti, G. Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data. Remote Sens. 2023, 15, 218. https://doi.org/10.3390/rs15010218
Bellini E, Moriondo M, Dibari C, Leolini L, Staglianò N, Stendardi L, Filippa G, Galvagno M, Argenti G. Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data. Remote Sensing. 2023; 15(1):218. https://doi.org/10.3390/rs15010218
Chicago/Turabian StyleBellini, Edoardo, Marco Moriondo, Camilla Dibari, Luisa Leolini, Nicolina Staglianò, Laura Stendardi, Gianluca Filippa, Marta Galvagno, and Giovanni Argenti. 2023. "Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data" Remote Sensing 15, no. 1: 218. https://doi.org/10.3390/rs15010218
APA StyleBellini, E., Moriondo, M., Dibari, C., Leolini, L., Staglianò, N., Stendardi, L., Filippa, G., Galvagno, M., & Argenti, G. (2023). Impacts of Climate Change on European Grassland Phenology: A 20-Year Analysis of MODIS Satellite Data. Remote Sensing, 15(1), 218. https://doi.org/10.3390/rs15010218