Stability Analysis of Unmixing-Based Spatiotemporal Fusion Model: A Case of Land Surface Temperature Product Downscaling
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
3. Methodology
3.1. Experimental Design
3.2. The Theoretical Basis of U-STFM
3.3. Evaluation
4. Results and Discussion
4.1. Analyzing the Effect of the Definition of the HCRs on Model Stability
4.2. Analyze the Effect of the Different Unmixing Levels on the Stability of the Model
4.3. Analysis of the Effect of the Number of HCRs on Model Stability
4.4. Compare Analyzed USTFM with STARFM and ESTARFM
5. Discussion
5.1. The Error Source of the Unmixing-Based Model
5.2. The Difficulty of LST Data Fusion
5.3. The Model Generalization
6. Conclusions
- The clustering-based algorithm is more suitable for detecting the HCRs and endmembers for unmixing. Compared with the multi-scale segmentation algorithm and K-means algorithm, the ISODATA clustering algorithm can more accurately describe LST’s temporal and spatial changes to HCRs.
- The fewer times the unmixing processing is used, the more stable the model predictions are. For the U-STFM model, applying the unmixing processing at the change ratio level can significantly reduce the additive and multiplicative noise of the prediction.
- The larger the number of HCRs (less than the available MODIS pixels), the more stable the model is. There is a tradeoff effect between the number of HCRs and the solvability of the linear unmixing function. The larger number of HCRs means that more details of the LST change can be captured, but the perdition of the change ratios in small HCRs that are only covered by a few MODIS pixels will be unstable.
- For the fusion of the daily 30 m scale LST product, the suitable setups for U-STFM use ISODATA as the detector for HCRs, controlling the HCRs above 100 and applying the unmixing model at the change ratio level. Compared with STARFM and ESTARFM, modified U-STFM (iso_USTFM) achieved higher prediction accuracy and lower error.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Ebrahimy, H.; Azadbakht, M. Downscaling MODIS Land Surface Temperature over a Heterogeneous Area: An Investigation of Machine Learning Techniques, Feature Selection, and Impacts of Mixed Pixels. Comput. Geosci. 2019, 124, 93–102. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L.; Tang, B.H.; Wu, H.; Tang, R. Direct Estimation of Land-Surface Diurnal Temperature Cycle Model Parameters from MSG–SEVIRI Brightness Temperatures under Clear Sky Conditions. Remote Sens. Environ. 2014, 150, 34–43. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Z.; Li, X.; Liu, C. A Comparative Study on Models for Estimating Evapotranspiration. J. Nat. Resour. 2003, 18, 161–167. [Google Scholar]
- Alhawiti, R.H.; Mitsova, D. Using Landsat-8 Data to Explore the Correlation between Urban Heat Island and Urban Land Uses. IJRET Int. J. Res. Eng. Technol. 2016, 5, 457–466. [Google Scholar]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring Daily Evapotranspiration over Two California Vineyards Using Landsat 8 in a Multi-Sensor Data Fusion Approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Bo, H.; Yongquan, Z. Research Status and Prospect of Spatiotemporal Fusion of Multi-Source Satellite Remote Sensing Imagery. Acta Geod. Cartogr. Sin. 2017, 46, 1492. [Google Scholar]
- DONG, W.; MENG, J. Review of Spatiotemporal Fusion Model of Remote Sensing Data. Remote Sens. Land Resour. 2018, 30, 1–11. [Google Scholar]
- Pu, R. Assessing Scaling Effect in Downscaling Land Surface Temperature in a Heterogenous Urban Environment. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102256. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Y.; Li, X.; Yang, K.; Liu, Q.; Luo, X.; Li, X. Downscaling Land Surface Temperature Based on Non-Linear Geographically Weighted Regressive Model over Urban Areas. Remote Sens. 2021, 13, 1580. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; He, L.; Chen, J.; Plaza, A. Spatio-Temporal Fusion for Remote Sensing Data: An Overview and New Benchmark. Sci. China Inf. Sci. 2020, 63, 140301. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Mao, Q.; Peng, J.; Wang, Y. Resolution Enhancement of Remotely Sensed Land Surface Temperature: Current Status and Perspectives. Remote Sens. 2021, 13, 1306. [Google Scholar] [CrossRef]
- Shen, H.; Meng, X.; Zhang, L. An Integrated Framework for the Spatio–Temporal–Spectral Fusion of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [Google Scholar] [CrossRef]
- Feng, G.; Masek, J.G.; Schwaller, M.R.; Hall, F.F. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A New Data Fusion Model for High Spatial-and Temporal-Resolution Mapping of Forest Disturbance Based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, B.; Song, H. A Robust Adaptive Spatial and Temporal Image Fusion Model for Complex Land Surface Changes. Remote Sens. Environ. Interdiscip. J. 2018, 208, 42–62. [Google Scholar] [CrossRef]
- Huang, B.; Song, H. Spatiotemporal Reflectance Fusion via Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar] [CrossRef]
- Wu, B.; Huang, B.; Zhang, L. An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6791–6803. [Google Scholar] [CrossRef]
- Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 821–829. [Google Scholar] [CrossRef]
- Ouyang, X.; Dou, Y.; Yang, J.; Chen, X.; Wen, J. High Spatiotemporal Rugged Land Surface Temperature Downscaling over Saihanba Forest Park, China. Remote Sens. 2022, 14, 2617. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, J.; Sun, P.; Pan, Y.; Yun, Y.; Yuan, Z. Remote Sensing Data Fusion by Combining STARFM and Downscaling Mixed Pixel Algorithm. J. Remote Sens. 2016, 20, 62–72. [Google Scholar]
- Liu, W.; Zeng, Y.; Li, S.; Huang, W. Spectral Unmixing Based Spatiotemporal Downscaling Fusion Approach. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102054. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-Based Multisensor Multiresolution Image Fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Zurita-Milla, R.; Clevers, J.; Schaepman, M.E. Unmixing-Based Landsat TM and MERIS FR Data Fusion. IEEE Geosci. Remote Sens. Lett. 2008, 5, 453–457. [Google Scholar] [CrossRef]
- Wu, M.; Niu, Z.; Wang, C.; Wu, C.; Wang, L. Use of MODIS and Landsat Time Series Data to Generate High-Resolution Temporal Synthetic Landsat Data Using a Spatial and Temporal Reflectance Fusion Model. J. Appl. Remote Sens. 2012, 6, 063507. [Google Scholar]
- Zhang, W.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Lei, G.; Qin, Z.; Huang, C. An Enhanced Spatial and Temporal Data Fusion Model for Fusing Landsat and MODIS Surface Reflectance to Generate High Temporal Landsat-like Data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H. Spatio-Temporal Reflectance Fusion via Unmixing: Accounting for Both Phenological and Land-Cover Changes. Int. J. Remote Sens. 2014, 35, 6213–6233. [Google Scholar] [CrossRef]
- Guo, S.; Sun, B.; Zhang, H.K.; Liu, J.; Chen, J.; Wang, J.; Jiang, X.; Yang, Y. MODIS Ocean Color Product Downscaling via Spatio-Temporal Fusion and Regression: The Case of Chlorophyll-a in Coastal Waters. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 340–361. [Google Scholar] [CrossRef]
- Wu, P.; Yin, Z.; Zeng, C.; Duan, S.B.; Shen, H. Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A Review of Reconstruction and Spatiotemporal Fusion Techniques. IEEE Geosci. Remote Sens. Mag. 2021, 9, 112–137. [Google Scholar] [CrossRef]
- Peng, K.; Wang, Q.; Tang, Y.; Tong, X.; Atkinson, P.M. Geographically Weighted Spatial Unmixing for Spatiotemporal Fusion. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5404217. [Google Scholar] [CrossRef]
- Ball, G.H.; Hall, J. A Novel Method of Data Analysis and Pattern Classification; Stanford Research Inst: Menlo Park, CA, USA, 1965. [Google Scholar]
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Proc. Fifth Berkeley Symp. Math. Stat. Probab. 1967, 5.1, 281–298. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-Resolution, Object-Oriented Fuzzy Analysis of Remote Sensing Data for GIS-Ready Information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Abbas, A.W.; Minallh, N.; Ahmad, N.; Abid, S.A.R.; Khan, M.A.A. K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. Sindh Univ. Res. J. SURJ (Sci. Ser.) 2016, 48, 315–318. [Google Scholar]
Date | Landsat 7 LST and MODIS LST Data Names | Spatial Resolution (m) |
---|---|---|
14 September 2000 | LE71220442000258SGS00 | 30 |
MOD11A1.A2000258.h28v06.061 | 1000 | |
1 November 2000 | LE71220442000306SGS00 | 30 |
MOD11A1.A2000306.h28v06.061 | 1000 | |
17 September 2001 | LE71220442001260SGS00 | 30 |
MOD11A1.A2001260.h28v06.061 | 1000 | |
20 November 2001 | LE71220442001324SGS00 | 30 |
MOD11A1.A2001324.h28v06.061 | 1000 | |
22 December 2001 | LE71220442001356BKT00 | 30 |
MOD11A1.A2001356.h28v06.061 | 1000 | |
7 January 2002 | LE71220442002007SGS00 | 30 |
MOD11A1.A2002007.h28v06.061 | 1000 | |
7 November 2002 | LE71220442002311EDC00 | 30 |
MOD11A1.A2002311.h28v06.061 | 1000 | |
10 January 2003 | LE71220442003010EDC00 | 30 |
MOD11A1.A2003010.h28v06.061 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Guo, S.; Chen, J.; Chang, Y.; Sun, L.; Zhao, L.; Li, X.; Yao, H. Stability Analysis of Unmixing-Based Spatiotemporal Fusion Model: A Case of Land Surface Temperature Product Downscaling. Remote Sens. 2023, 15, 901. https://doi.org/10.3390/rs15040901
Li M, Guo S, Chen J, Chang Y, Sun L, Zhao L, Li X, Yao H. Stability Analysis of Unmixing-Based Spatiotemporal Fusion Model: A Case of Land Surface Temperature Product Downscaling. Remote Sensing. 2023; 15(4):901. https://doi.org/10.3390/rs15040901
Chicago/Turabian StyleLi, Min, Shanxin Guo, Jinsong Chen, Yuguang Chang, Luyi Sun, Longlong Zhao, Xiaoli Li, and Hongming Yao. 2023. "Stability Analysis of Unmixing-Based Spatiotemporal Fusion Model: A Case of Land Surface Temperature Product Downscaling" Remote Sensing 15, no. 4: 901. https://doi.org/10.3390/rs15040901
APA StyleLi, M., Guo, S., Chen, J., Chang, Y., Sun, L., Zhao, L., Li, X., & Yao, H. (2023). Stability Analysis of Unmixing-Based Spatiotemporal Fusion Model: A Case of Land Surface Temperature Product Downscaling. Remote Sensing, 15(4), 901. https://doi.org/10.3390/rs15040901