A Study on Spatial and Temporal Dynamic Changes of Desertification in Northern China from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Machine Learning Models
2.3.1. Classification System and Samples
2.3.2. Machine Learning Models
2.4. Accuracy Verification
3. Results
3.1. Accuracy of Machine Learning Models with Different Combinations of Metrics
3.2. Accuracy Verification by the Data Set
3.3. Spatial and Temporal Distribution Characteristics of Desertification
3.3.1. Changes in the Spatial Distribution of Desertification
3.3.2. Interannual Variation of Desertification
4. Discussion
4.1. Theil–Sen Median Slope Estimation and Mann–Kendall Trend Analysis for Long-Time Series
4.2. Driving Forces of Desertification Change
4.2.1. Land-Use Changes
4.2.2. Changes in Climate Drivers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Desertification Type | Image Characteristics | Google Earth | Landsat-8 |
---|---|---|---|
Extremely severe desertification | The surface morphology is mostly sand dunes and Gobi, with almost no vegetation and white or yellowish tones on Landsat images. | ||
Severe desertification | Semi-fixed, semi-fluid dunes with sparse vegetation, mainly white and yellow with some red patches on Landsat images. | ||
Moderate desertification | The surface morphology is mostly mobile or semi-fixed sand with vegetation distribution. Landsat images show interspersed red and white patches. | ||
Slight desertification | The surface morphology is mostly vegetated, with floating sand accumulations in the vegetation. On Landsat images, yellow and creamy white patches are scattered in patches of deep red. | ||
None desertification | Surface morphology is overwhelmingly vegetated, with large areas of red on Landsat images. |
References
- UNCCD. United Nations Convention to Combat Desertification in Countries Experiencing Serious Drought and/or Desertification, particularly in Africa; UNCCD: Paris, France, 14 October 1994. [Google Scholar]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Xu, D.Y.; Zhang, X. Multi-scenario simulation of desertification in North China for 2030. Land Degrad. Dev. 2021, 32, 1060–1074. [Google Scholar] [CrossRef]
- Ming, Y.F.; Zhang, Y.N.; Kang, J.F.; Feng, K.T. Spatial-temporal dynamic monitoring of desertification degree in China-Pakistan Economic Corridor based on MODIS images. Remote Sens. Technol. Appl. 2021, 36, 827–837. [Google Scholar]
- Feng, K.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Guo, Z.; Zhi, Y. Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China. Remote Sens. 2022, 14, 2663. [Google Scholar]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Brisco, B. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Liu, P. A survey of remote-sensing big data. Front. Environ. Sci. 2015, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zdruli, P.; Lacirignola, C.; Lamaddalena, N.; Liuzzi, G.T. The eu-funded medcoastland thematic network and its findings in combating land degradation in the mediterranean region. Environ. Sci. Eng. 2007, 421–435. [Google Scholar]
- Martinez-Valderrama, J.; Guirado, E.; Maestre, F. Desertifying deserts. Nat. Sustain. 2020, 3, 572–575. [Google Scholar] [CrossRef]
- Wang, X.M.; Hua, T.; Liang, L.L.; Ma, W.Y. Spatial differences of aeolian desertification responses to climate in arid Asia. Glob. Planet. Change 2017, 148, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Su, Z.Z.; Chen, Z.X. Revision of the potential range of desertification in China. J. Desert Res. 2007, 27, 911–917+1093–1094. [Google Scholar]
- Zhu, Y.; Zhang, J.; Zhang, Y.; Qin, S.; Shao, Y.; Gao, Y. Responses of vegetation to climatic variations in the desert region of northern China. Catena 2019, 175, 27–36. [Google Scholar] [CrossRef]
- Aragaw, H.M.; Mishra, S. Runoff curve number-potential evapotranspiration-duration relationship for selected watersheds in Ethiopia. Model. Earth Syst. Environ. 2022, 8, 1899–1910. [Google Scholar] [CrossRef]
- Guo, Q. Monitoring and Assessment Desertification from Remote Sensing in the Northern China; University of Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Thornthwaite, C.W. An Approach Toward a Rational Classification of Climate. Soil Sci. 1948, 66, 55–94. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Ma, Z.; Zheng, Z.; Duan, Y. Sensitivity of Potential Evapotranspiration Estimation to the Thornthwaite and Penman-Monteith Methods in the Study of Global Drylands. Adv. Atmos. Sci. 2017, 34, 1381–1394. [Google Scholar] [CrossRef]
- Bian, Z. Studies of Desertification Monitoring Methods Based on Remote Sensing Techniques; Beijing Forestry University: Beijing, China, 2011. [Google Scholar]
- Zheng, J.; Yin, X.R.; Yan, Y. Introduction to Thornthwaite revised water zoning method. Meteorol. Sci. Technol. 1982, 65–74. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Song, D. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res.-Atmos. 2014, 119, 10281–10298. [Google Scholar] [CrossRef]
- Qin, Y.H.; Luo, J.; Chen, Z.; Mei, G.X.; Yan, L. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol. Energy 2018, 171, 971–976. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Sun, Q.; Shuai, Y.; Román, M.O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Wan, Z.M. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- de Andrade, M.D.; Delgado, R.C.; da Costa de Menezes, S.J.M.; de Ávila Rodrigues, R.; Teodoro, P.E.; da Silva Junior, C.A.; Pereira, M.G. Evaluation of the MOD11A2 product for canopy temperature monitoring in the Brazilian Atlantic Forest. Environ. Monit. Assess. 2021, 193, 45. [Google Scholar]
- Ning, T.; Liu, W.; Wen, L.; Song, X. NDVI Variation and Its Responses to Climate Change on the Northern Loess Plateau of China from 1998 to 2012. Adv. Meteorol. 2015, 2015, 725427. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Tomar, V.; Mandal, V.P.; Srivastava, P.; Patairiya, S.; Singh, K.; Ravisankar, N.; Subash, N.; Kumar, P. Rice Equivalent Crop Yield Assessment Using MODIS Sensors’ Based MOD13A1-NDVI Data. IEEE Sens. J. 2014, 14, 3599–3605. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar]
- Lamchin, M.; Lee, J.Y.; Lee, W.K.; Lee, E.J.; Kim, M.; Lim, C.H.; Choi, H.A.; Kim, S.R. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Adv. Space Res. 2016, 57, 64–77. [Google Scholar] [CrossRef]
- Liu, Q.S.; Liu, G.; Huang, C. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. J. Arid Land 2018, 10, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Diem, P.K.; Diem, N.K.; Hung, H.V. Assessment of the Efficiency of Using Modis Mcd43a4 in Mapping of Rice Planting Calendar in the Mekong Delta. IOP Conf. Ser. Earth Environ. Sci. 2021, 652, 012015. [Google Scholar] [CrossRef]
- Na, R.S.; Du, H.; Na, L.; Shan, Y.; Huang, L. Spatiotemporal changes in the Aeolian desertification of Hulunbuir Grassland and its driving factors in China during 1980–2015. Catena 2019, 182, 104123. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y. A Weighted Minimum Distance Classifier Based on Relative Offset. In Proceedings of the 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15 April 2019; pp. 343–347. [Google Scholar]
- Lu, D.S.; Mausel, P.; Batistella, M. Comparison of land-cover classification methods in the Brazilian Amazon Basin. Photogramm. Eng. Remote Sens. 2004, 70, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Choubin, B.; Darabi, H.; Rahmati, O.; Sajedi-Hosseini, F.; Klve, B. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Sci. Total Environ. 2018, 615, 272–281. [Google Scholar] [CrossRef]
- Qian, Y.G.; Zhou, W.Q.; Yan, J.L.; Li, W.F.; Han, L.J. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Brieuc, M.S.O.; Waters, C.D.; Drinan, D.P.; Naish, K.A. A practical introduction to Random Forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour. 2018, 18, 755–766. [Google Scholar] [CrossRef]
- Fan, Z.M.; Li, S.B.; Fang, H.Y. Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data. Remote Sens. 2020, 12, 3170. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Jiang, L.L.; Jiapaer, G.; Bao, A.M.; Kurban, A.; Guo, H.; Zheng, G.X.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, J.Q.; Guo, E.L.; Tong, S.Q. Monitoring the trends of aeolian desertified lands based on time-series remote sensing data in the Horqin Sandy Land, China. Catena 2017, 157, 286–298. [Google Scholar] [CrossRef]
- Erb, K.H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic climate change has driven over 5 million km(2) of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Huang, J.P.; Zhang, G.L.; Zhang, Y.T.; Guan, X.D.; Wei, Y.; Guo, R.X. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Seydi, S.T.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire Damage Assessment over Australia Using Sentinel-2 Imagery and MODIS Land Cover Product within the Google Earth Engine Cloud Platform. Remote Sens. 2021, 13, 220. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Qian, M.J.; Zeng, Z.Q. Land Use Transition and Driving Forces in Chinese Loess Plateau: A Case Study from Pu County, Shanxi Province. Land 2021, 10, 67. [Google Scholar] [CrossRef]
- Peng, L.; Chen, T.T.; Liu, S.Q. Spatiotemporal Dynamics and Drivers of Farmland Changes in Panxi Mountainous Region, China. Sustainability 2016, 8, 1209. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.F.; Zhang, Q.; Yan, Y.Z.; Zhang, X.F.; Niu, J.M.; Svenning, J.C. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Duan, H.C.; Wang, T.; Xue, X.; Yan, C.Z. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.; Soares, A. Local spatiotemporal dynamics of a simple aridity index in a region susceptible to desertification. J. Arid Environ. 2012, 87, 8–18. [Google Scholar] [CrossRef]
- Zhang, C.X.; Wang, X.M.; Li, J.C.; Hua, T. Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. Ecol. Indic. 2020, 112, 106141. [Google Scholar] [CrossRef]
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Latitude | |||||||||||||
0 | 1.04 | 0.94 | 1.04 | 1.01 | 1.04 | 1.01 | 1.04 | 1.04 | 1.01 | 1.04 | 1.01 | 1.04 | |
10 | 1 | 0.91 | 1.03 | 1.03 | 1.08 | 1.06 | 1.08 | 1.07 | 1.02 | 1.02 | 0.98 | 0.99 | |
20 | 0.95 | 0.89 | 1.03 | 1.05 | 1.13 | 1.11 | 1.14 | 1.11 | 1.02 | 1 | 0.93 | 0.94 | |
30 | 0.9 | 0.87 | 1.03 | 1.08 | 1.18 | 1.17 | 1.2 | 1.14 | 1.03 | 0.98 | 0.89 | 0.88 | |
35 | 0.87 | 0.85 | 1.03 | 1.09 | 1.21 | 1.21 | 1.23 | 1.16 | 1.03 | 0.97 | 0.86 | 0.85 | |
40 | 0.84 | 0.83 | 1.03 | 1.11 | 1.24 | 1.25 | 1.27 | 1.18 | 1.04 | 0.96 | 0.87 | 0.81 | |
45 | 0.8 | 0.81 | 1.02 | 1.13 | 1.28 | 1.29 | 1.31 | 1.21 | 1.04 | 0.94 | 0.79 | 0.75 | |
50 | 0.74 | 0.78 | 1.02 | 1.15 | 1.32 | 1.36 | 1.37 | 1.25 | 1.06 | 0.92 | 0.76 | 0.7 |
Data | Data Sources | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Albedo | https://lpdaac.usgs.gov/products/mcd43a3v006/ (accessed on 23 August 2022) | 500 m | 1 day/2000–2020 |
LST | https://lpdaac.usgs.gov/products/mod11a2v006/ (accessed on 23 August 2022) | 1000 m | 8 days/2000–2020 |
NDVI | https://lpdaac.usgs.gov/products/mod13a1v006/ (accessed on 23 August 2022) | 500 m | 16 days/2000–2020 |
TGSI | https://lpdaac.usgs.gov/products/mcd43a4v006/ (accessed on 23 August 2022) | 500 m | 1 day/2000–2020 |
Precipitation | http://www.geodata.cn (accessed on 9 July 2022) | 1000 m | 1 month/2000–2020 |
Potential evaporation | http://www.geodata.cn | 1000 m | 1 month/2000–2020 |
Temperature | http://www.geodata.cn | 1000 m | 1 month/2000–2020 |
Wind speed | http://www.geodata.cn | 1000 m | 1 month/2000–2020 |
Land Cover | https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 3 October 2022) | 500 m | 1 year/2001–2020 |
Combinations | MD | CART | SVM | RF | ||||
---|---|---|---|---|---|---|---|---|
OA (%) | KAPPA | OA (%) | KAPPA | OA (%) | KAPPA | OA (%) | KAPPA | |
ALNT | 54.30 | 0.43 | 78.69 | 0.73 | 71.13 | 0.64 | 86.94 | 0.84 |
ALN | 51.33 | 0.39 | 72.33 | 0.65 | 71.67 | 0.65 | 73 | 0.66 |
ALT | 50.00 | 0.37 | 61.74 | 0.52 | 53.02 | 0.42 | 68.46 | 0.61 |
ANT | 69.42 | 0.62 | 75.84 | 0.7 | 69.11 | 0.62 | 81.04 | 0.76 |
LNT | 52.16 | 0.40 | 71.43 | 0.64 | 69.77 | 0.62 | 76.41 | 0.70 |
AL | 53.43 | 0.41 | 53.07 | 0.41 | 49.46 | 0.37 | 63.54 | 0.54 |
AN | 68.87 | 0.61 | 70.13 | 0.63 | 68.87 | 0.61 | 69.81 | 0.62 |
AT | 57.47 | 0.47 | 54.87 | 0.44 | 45.78 | 0.32 | 59.42 | 0.49 |
LN | 50.33 | 0.38 | 63.91 | 0.55 | 70.20 | 0.63 | 68.89 | 0.61 |
LT | 54.10 | 0.42 | 52.46 | 0.41 | 51.80 | 0.40 | 53.77 | 0.42 |
NT | 66.56 | 0.58 | 68.13 | 0.60 | 66.88 | 0.59 | 75.31 | 0.69 |
Degree of Desertification | ES | S | M | L | Total |
---|---|---|---|---|---|
ES | 92 | 7 | 0 | 2 | 101 |
S | 37 | 85 | 3 | 13 | 138 |
M | 7 | 14 | 46 | 13 | 80 |
L | 0 | 8 | 0 | 55 | 63 |
2000 | 2020 | |
---|---|---|
Extremely severe (km2) | 1,581,317 | 1,370,842 |
Severe (km2) | 703,489.5 | 676,974.9 |
Moderate (km2) | 335,991.7 | 282,457.2 |
Light (km2) | 75,5867.4 | 833,718.7 |
Total (km2) | 3,376,665 | 3,163,992 |
PREC | WS | PET | TEMP | |
---|---|---|---|---|
Pearson correlation coefficient | −0.570 | 0.856 | −0.274 | −0.163 |
Sig | 0.007 | 0.000 | 0.230 | 0.480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Ni, X.; Xing, M. A Study on Spatial and Temporal Dynamic Changes of Desertification in Northern China from 2000 to 2020. Remote Sens. 2023, 15, 1368. https://doi.org/10.3390/rs15051368
Jiang Z, Ni X, Xing M. A Study on Spatial and Temporal Dynamic Changes of Desertification in Northern China from 2000 to 2020. Remote Sensing. 2023; 15(5):1368. https://doi.org/10.3390/rs15051368
Chicago/Turabian StyleJiang, Zhaolin, Xiliang Ni, and Minfeng Xing. 2023. "A Study on Spatial and Temporal Dynamic Changes of Desertification in Northern China from 2000 to 2020" Remote Sensing 15, no. 5: 1368. https://doi.org/10.3390/rs15051368
APA StyleJiang, Z., Ni, X., & Xing, M. (2023). A Study on Spatial and Temporal Dynamic Changes of Desertification in Northern China from 2000 to 2020. Remote Sensing, 15(5), 1368. https://doi.org/10.3390/rs15051368