Identifying PM2.5-Related Health Burden in the Context of the Integrated Development of Urban Agglomeration Using Remote Sensing and GEMM Model
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. PM2.5 Concentration Mapping
3.2. Hot Spot Analysis
3.3. Public Health Burden Analysis
3.3.1. Demographic Data Correction
3.3.2. Exposure Factors
3.3.3. Premature Mortality Estimation
4. Results
4.1. Hot Spot Analysis of PM2.5 Concentrations and Population Density
4.2. Provincial and City Level Variations of Premature Mortality
4.3. Potential Influence of Urban Development on Premature Mortality
5. Discussion
5.1. Evaluation of the Integrated Development of the Urban Agglomeration
5.2. New Periods of the Integrated Development of Urban Agglomeration
5.3. Comparison with Similar Studies
5.4. Limitations and Future Improvements
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Khanum, S.; Chowdhury, Z.; Sant, K.E. Association between particulate matter air pollution and heart attacks in San Diego County. J. Air Waste Manag. Assoc. 2021, 71, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 21 December 2021).
- Brauer, M.; Freedman, G.; Frostad, J.; van Donkelaar, A.; Martin, R.V.; Dentener, F.; van Dingenen, R.; Estep, K.; Amini, H.; Apte, J.S.; et al. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol. 2016, 50, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.T.; Spadaro, J.V.; Garcia, G.R.; Pope, C.A. Designing health impact functions to assess marginal changes in outdoor fine particulate matter. Environ. Res. 2022, 204, 112245. [Google Scholar] [CrossRef]
- Chen, J.; Hoek, G. Long-term exposure to pm and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, L. A joint prevention and control mechanism for air pollution in the beijing-tianjin-hebei region in china based on long-term and massive data mining of pollutant concentration. Atmos. Environ. 2018, 174, 25–42. [Google Scholar] [CrossRef]
- Du, H.; Guo, Y.; Lin, Z.; Qiu, Y.; Xiao, X. Effects of the joint prevention and control of atmospheric pollution policy on air pollutants-A quantitative analysis of Chinese policy texts. J. Environ. Manag. 2021, 300, 113721. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Q.; Ban, J.; Liu, Z.; Zhang, Y.; Ma, R.; Li, S.; Li, T. Estimating the daily PM2.5 concentration in the Beijing-Tianjin-Hebei region using a random forest model with a 0.01° × 0.01° spatial resolution spatial resolution. Environ. Int. 2020, 134, 105297. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Zou, B.; You, J.; Lin, Y.; Duan, X.; Zhao, X.; Fang, X.; Campen, M.J.; Li, S. Air pollution intervention and life-saving effect in China. Environ. Int. 2019, 125, 529–541. [Google Scholar] [CrossRef]
- Zou, B.; Li, S.; Lin, Y.; Wang, B.; Cao, S.; Zhao, X.; Peng, F.; Qin, N.; Guo, Q.; Feng, H.; et al. Efforts in reducing air pollution exposure risk in China: State versus individuals. Environ. Int. 2020, 137, 105504. [Google Scholar] [CrossRef]
- Song, Y.; Huang, B.; He, Q.; Chen, B.; Wei, J.; Mahmood, R. Dynamic assessment of PM2.5 exposure and health risk using remote sensing and geo-spatial big data. Environ. Pollut. 2019, 253, 288–296. [Google Scholar] [CrossRef]
- Song, W.; Hai, J.; Jing, H.; Yi, Z. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- Zou, B.; Pu, Q.; Bilal, M.; Weng, Q.; Zhai, L.; Nichol, J.E. High-Resolution Satellite Mapping of Fine Particulates Based on Geographically Weighted Regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 495–499. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. 2009, 114, D14205. [Google Scholar] [CrossRef]
- Benas, N.; Beloconi, A.; Chrysoulakis, N. Estimation of urban PM10 concentration, based on MODIS and MERIS/AATSR synergistic observations. Atmos. Environ. 2013, 79, 448–454. [Google Scholar] [CrossRef]
- Pelletier, B.; Santer, R.; Vidot, J. Retrieving of particulate matter from optical measurements: A semiparametric approach. J. Geophys. Res. 2007, 112, D06208. [Google Scholar] [CrossRef]
- Chen, B.; You, S.; Ye, Y.; Fu, Y.; Ye, Z.; Deng, J.; Wang, K.; Hong, Y. An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Sci. Total Environ. 2021, 768, 144724. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health burden attributable to ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A., III; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Jiao, D.; Xu, N.; Yang, F.; Xu, K. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Sci. Rep. 2021, 11, 17956. [Google Scholar] [CrossRef]
- Luc, A.; Ibnu, S.; Youngihn, K. GeoDa: An Introduction to Spatial Data Analysis. Geog. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Wang, B.; Cao, S.; Ma, J.; Huang, N.; Nie, J.; Wang, Z.; Duan, X. Time-activity factors related to air exposure. In Highlights of the Chinese Exposure Factors Handbook (Adults); Academic Press: Cambridge, MA, USA, 2015; pp. 31–39. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, Y.; Wang, B.; Zhao, X.; Shen, G.; Cao, S.; Huang, N.; Qian, Y.; Chen, Y.; Wang, L. Household fuel use for cooking and heating in China: Results from the first Chinese environmental exposure-related human activity patterns survey (CEERHAPS). Appl. Energy 2014, 136, 692–703. [Google Scholar] [CrossRef]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution mortality in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Xiao, P.; Fang, S. Study on Coordinated Governance and Evaluation of Air Pollution in Beijing-Tianjin-Hebei Region. Earth Environ. Sci. 2020, 440, 042025. [Google Scholar] [CrossRef]
- Cheng, J.; Tong, D.; Zhang, Q.; Liu, Y.; Lei, Y.; Yan, G.; Yan, L.; Yu, S.; Cui, R.Y.; Clarke, L.; et al. Pathways of China’s PM2.5 air quality 2015–2060 in the context of carbon neutrality. Natl. Sci. Rev. 2021, 29, 8. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total. Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef]
- Kamal, M. Substantial changes in PM2.5 pollution and corresponding premature mortality across China during 2015–2019: A model prospective. Sci. Total Environ. 2020, 729, 138838. [Google Scholar] [CrossRef]
- Shehab, M.A.; Pope, F.D. Effects of short-term exposure to particulate matter air pollution on cognitive performance. Sci. Rep. 2019, 9, 8237. [Google Scholar] [CrossRef]
GDP per Capita | Residential Density | Urban Greening Rate | Secondary Industry | |
---|---|---|---|---|
2015 | 0.494 ** | 0.787 ** | −0.268 | −0.504 ** |
2016 | 0.538 ** | 0.789 ** | −0.249 | −0.496 ** |
2017 | 0.564 ** | 0.808 ** | −0.363 * | −0.502 ** |
2018 | 0.552 ** | 0.815 ** | −0.295 | −0.391 * |
2019 | 0.560 ** | 0.813 ** | −0.366 * | −0.476 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Chen, B.; Huang, C.; Zhou, M.; You, S.; Jiang, F.; Chen, W.; Deng, J. Identifying PM2.5-Related Health Burden in the Context of the Integrated Development of Urban Agglomeration Using Remote Sensing and GEMM Model. Remote Sens. 2023, 15, 2770. https://doi.org/10.3390/rs15112770
Xu L, Chen B, Huang C, Zhou M, You S, Jiang F, Chen W, Deng J. Identifying PM2.5-Related Health Burden in the Context of the Integrated Development of Urban Agglomeration Using Remote Sensing and GEMM Model. Remote Sensing. 2023; 15(11):2770. https://doi.org/10.3390/rs15112770
Chicago/Turabian StyleXu, Lili, Binjie Chen, Chenhao Huang, Mengmeng Zhou, Shucheng You, Fangming Jiang, Weirong Chen, and Jinsong Deng. 2023. "Identifying PM2.5-Related Health Burden in the Context of the Integrated Development of Urban Agglomeration Using Remote Sensing and GEMM Model" Remote Sensing 15, no. 11: 2770. https://doi.org/10.3390/rs15112770
APA StyleXu, L., Chen, B., Huang, C., Zhou, M., You, S., Jiang, F., Chen, W., & Deng, J. (2023). Identifying PM2.5-Related Health Burden in the Context of the Integrated Development of Urban Agglomeration Using Remote Sensing and GEMM Model. Remote Sensing, 15(11), 2770. https://doi.org/10.3390/rs15112770