Vegetation Subtype Classification of Evergreen Broad-Leaved Forests in Mountainous Areas Using a Hierarchy-Based Classifier
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data Sources
2.2.1. Datasets
2.2.2. Field Data
2.3. Data Preprocessing
2.3.1. Images Preprocessing
- Image compositing
- Topographic correction
2.3.2. Environmental Variables Preprocessing
2.3.3. Sample Datasets
2.4. Hierarchy-Based Classifier
2.4.1. The Hierarchical Structure
2.4.2. Features Selection
- Feature selection for extracting evergreen broad-leaved forests
- Feature selection for classifying the HEBF and SEBF
2.5. Classification Scheme Device
2.6. Accuracy Assessment
3. Results
3.1. Extraction Results of the Evergreen Broad-Leaved Forest
3.2. Filtering of Environmental Variables
3.3. Classification Results of the HEBF and SEBF
4. Discussion
4.1. Sensitivity Analysis of Classification Accuracy
4.2. Analysis of Spatial Patterns of Evergreen Broad-Leaved Forest in Sichuan Province
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
The Number of Landsat 8 OLI Serial | Dry Seasons Images | Wet Seasons Images |
---|---|---|
1 | LC08_127037_20191203 | LC08_127038_20200831 |
2 | LC08_127038_20200120 | LC08_127037_20200714 |
3 | LC08_127039_20200324 | LC08_127039_20200714 |
4 | LC08_127040_20191101 | LC08_127040_20200714 |
5 | LC08_127041_20191101 | LC08_127041_20200831 |
6 | LC08_128037_20191226 | LC08_128038_20200907 |
7 | LC08_128038_20200111 | LC08_128037_20200603 |
8 | LC08_128039_20191210 | LC08_128039_20200907 |
9 | LC08_128040_20200111 | LC08_128040_20200907 |
10 | LC08_128041_20200212 | LC08_128041_20200603 |
11 | LC08_129037_20200219 | LC08_129038_20200712 |
12 | LC08_129038_20200219 | LC08_129037_20200813 |
13 | LC08_129039_20200219 | LC08_129039_20200728 |
14 | LC08_129040_20200219 | LC08_129040_20200728 |
15 | LC08_129041_20200219 | LC08_129041_20200728 |
16 | LC08_129042_20191217 | LC08_129042_20200728 |
17 | LC08_130037_20191122 | LC08_130038_20200719 |
18 | LC08_130038_20191208 | LC08_130037_20200719 |
19 | LC08_130039_20200210 | LC08_130039_20200703 |
20 | LC08_130040_20200226 | LC08_130040_20200703 |
21 | LC08_130041_20200226 | LC08_130041_20200601 |
22 | LC08_130042_20200313 | LC08_130042_20200601 |
23 | LC08_130036_20200313 | LC08_130036_20200719 |
24 | LC08_131037_20191231 | LC08_131038_20200624 |
25 | LC08_131038_20200116 | LC08_131037_20200624 |
26 | LC08_131039_20191215 | LC08_131039_20200827 |
27 | LC08_131040_20191215 | LC08_131040_20200827 |
28 | LC08_131041_20191129 | LC08_131041_20200827 |
29 | LC08_131042_20191129 | LC08_131042_20200827 |
30 | LC08_131036_20191231 | LC08_131036_20200624 |
31 | LC08_132037_20191206 | LC08_132038_20200903 |
32 | LC08_132038_20191206 | LC08_132037_20200903 |
33 | LC08_132039_20191206 | LC08_132039_20200903 |
34 | LC08_132040_20191206 | LC08_132040_20200903 |
35 | LC08_132041_20191206 | LC08_132041_20200701 |
36 | LC08_132036_20200107 | LC08_132036_20200802 |
37 | LC08_133037_20191229 | LC08_133038_20200825 |
38 | LC08_133038_20191229 | LC08_133037_20200825 |
39 | LC08_133039_20200114 | LC08_133039_20200825 |
40 | LC08_133040_20200114 | LC08_133040_20200825 |
41 | LC08_134037_20200325 | LC08_134038_20200901 |
42 | LC08_134038_20200325 | LC08_134037_20200917 |
43 | LC08_134036_20191102 | LC08_134036_20200917 |
The Number of Sentinel-1 Serial | Dry Seasons Images | Wet Seasons Images |
---|---|---|
1 | LC08_127037_20191203 | LC08_127038_20200831 |
2 | LC08_127038_20200120 | LC08_127037_20200714 |
3 | LC08_127039_20200324 | LC08_127039_20200714 |
4 | LC08_127040_20191101 | LC08_127040_20200714 |
5 | LC08_127041_20191101 | LC08_127041_20200831 |
6 | LC08_128037_20191226 | LC08_128038_20200907 |
7 | LC08_128038_20200111 | LC08_128037_20200603 |
8 | LC08_128039_20191210 | LC08_128039_20200907 |
9 | LC08_128040_20200111 | LC08_128040_20200907 |
10 | LC08_128041_20200212 | LC08_128041_20200603 |
11 | LC08_129037_20200219 | LC08_129038_20200712 |
12 | LC08_129038_20200219 | LC08_129037_20200813 |
13 | LC08_129039_20200219 | LC08_129039_20200728 |
14 | LC08_129040_20200219 | LC08_129040_20200728 |
15 | LC08_129041_20200219 | LC08_129041_20200728 |
16 | LC08_129042_20191217 | LC08_129042_20200728 |
17 | LC08_130037_20191122 | LC08_130038_20200719 |
18 | LC08_130038_20191208 | LC08_130037_20200719 |
19 | LC08_130039_20200210 | LC08_130039_20200703 |
20 | LC08_130040_20200226 | LC08_130040_20200703 |
21 | LC08_130041_20200226 | LC08_130041_20200601 |
22 | LC08_130042_20200313 | LC08_130042_20200601 |
23 | LC08_130036_20200313 | LC08_130036_20200719 |
24 | LC08_131037_20191231 | LC08_131038_20200624 |
25 | LC08_131038_20200116 | LC08_131037_20200624 |
26 | LC08_131039_20191215 | LC08_131039_20200827 |
27 | LC08_131040_20191215 | LC08_131040_20200827 |
28 | LC08_131041_20191129 | LC08_131041_20200827 |
29 | LC08_131042_20191129 | LC08_131042_20200827 |
30 | LC08_131036_20191231 | LC08_131036_20200624 |
31 | LC08_132037_20191206 | LC08_132038_20200903 |
32 | LC08_132038_20191206 | LC08_132037_20200903 |
33 | LC08_132039_20191206 | LC08_132039_20200903 |
34 | LC08_132040_20191206 | LC08_132040_20200903 |
35 | LC08_132041_20191206 | LC08_132041_20200701 |
36 | LC08_132036_20200107 | LC08_132036_20200802 |
37 | LC08_133037_20191229 | LC08_133038_20200825 |
38 | LC08_133038_20191229 | LC08_133037_20200825 |
39 | LC08_133039_20200114 | LC08_133039_20200825 |
40 | LC08_133040_20200114 | LC08_133040_20200825 |
41 | LC08_134037_20200325 | LC08_134038_20200901 |
42 | LC08_134038_20200325 | LC08_134037_20200917 |
43 | LC08_134036_20191102 | LC08_134036_20200917 |
Appendix B
The Number of Landsat 8 OLI Serial | Dry Seasons Images | Wet Seasons Images |
---|---|---|
1 | LC08_127037_20191203 | LC08_127038_20200831 |
2 | LC08_127038_20200120 | LC08_127037_20200714 |
3 | LC08_127039_20200324 | LC08_127039_20200714 |
4 | LC08_127040_20191101 | LC08_127040_20200714 |
5 | LC08_127041_20191101 | LC08_127041_20200831 |
6 | LC08_128037_20191226 | LC08_128038_20200907 |
7 | LC08_128038_20200111 | LC08_128037_20200603 |
8 | LC08_128039_20191210 | LC08_128039_20200907 |
9 | LC08_128040_20200111 | LC08_128040_20200907 |
10 | LC08_128041_20200212 | LC08_128041_20200603 |
11 | LC08_129037_20200219 | LC08_129038_20200712 |
12 | LC08_129038_20200219 | LC08_129037_20200813 |
13 | LC08_129039_20200219 | LC08_129039_20200728 |
14 | LC08_129040_20200219 | LC08_129040_20200728 |
15 | LC08_129041_20200219 | LC08_129041_20200728 |
16 | LC08_129042_20191217 | LC08_129042_20200728 |
17 | LC08_130037_20191122 | LC08_130038_20200719 |
18 | LC08_130038_20191208 | LC08_130037_20200719 |
19 | LC08_130039_20200210 | LC08_130039_20200703 |
20 | LC08_130040_20200226 | LC08_130040_20200703 |
21 | LC08_130041_20200226 | LC08_130041_20200601 |
22 | LC08_130042_20200313 | LC08_130042_20200601 |
23 | LC08_130036_20200313 | LC08_130036_20200719 |
24 | LC08_131037_20191231 | LC08_131038_20200624 |
25 | LC08_131038_20200116 | LC08_131037_20200624 |
26 | LC08_131039_20191215 | LC08_131039_20200827 |
27 | LC08_131040_20191215 | LC08_131040_20200827 |
28 | LC08_131041_20191129 | LC08_131041_20200827 |
29 | LC08_131042_20191129 | LC08_131042_20200827 |
30 | LC08_131036_20191231 | LC08_131036_20200624 |
31 | LC08_132037_20191206 | LC08_132038_20200903 |
32 | LC08_132038_20191206 | LC08_132037_20200903 |
33 | LC08_132039_20191206 | LC08_132039_20200903 |
34 | LC08_132040_20191206 | LC08_132040_20200903 |
35 | LC08_132041_20191206 | LC08_132041_20200701 |
36 | LC08_132036_20200107 | LC08_132036_20200802 |
37 | LC08_133037_20191229 | LC08_133038_20200825 |
38 | LC08_133038_20191229 | LC08_133037_20200825 |
39 | LC08_133039_20200114 | LC08_133039_20200825 |
40 | LC08_133040_20200114 | LC08_133040_20200825 |
41 | LC08_134037_20200325 | LC08_134038_20200901 |
42 | LC08_134038_20200325 | LC08_134037_20200917 |
43 | LC08_134036_20191102 | LC08_134036_20200917 |
The Number of Sentinel-1 Serial | Dry Seasons Images | Wet Seasons Images |
---|---|---|
1 | LC08_127037_20191203 | LC08_127038_20200831 |
2 | LC08_127038_20200120 | LC08_127037_20200714 |
3 | LC08_127039_20200324 | LC08_127039_20200714 |
4 | LC08_127040_20191101 | LC08_127040_20200714 |
5 | LC08_127041_20191101 | LC08_127041_20200831 |
6 | LC08_128037_20191226 | LC08_128038_20200907 |
7 | LC08_128038_20200111 | LC08_128037_20200603 |
8 | LC08_128039_20191210 | LC08_128039_20200907 |
9 | LC08_128040_20200111 | LC08_128040_20200907 |
10 | LC08_128041_20200212 | LC08_128041_20200603 |
11 | LC08_129037_20200219 | LC08_129038_20200712 |
12 | LC08_129038_20200219 | LC08_129037_20200813 |
13 | LC08_129039_20200219 | LC08_129039_20200728 |
14 | LC08_129040_20200219 | LC08_129040_20200728 |
15 | LC08_129041_20200219 | LC08_129041_20200728 |
16 | LC08_129042_20191217 | LC08_129042_20200728 |
17 | LC08_130037_20191122 | LC08_130038_20200719 |
18 | LC08_130038_20191208 | LC08_130037_20200719 |
19 | LC08_130039_20200210 | LC08_130039_20200703 |
20 | LC08_130040_20200226 | LC08_130040_20200703 |
21 | LC08_130041_20200226 | LC08_130041_20200601 |
22 | LC08_130042_20200313 | LC08_130042_20200601 |
23 | LC08_130036_20200313 | LC08_130036_20200719 |
24 | LC08_131037_20191231 | LC08_131038_20200624 |
25 | LC08_131038_20200116 | LC08_131037_20200624 |
26 | LC08_131039_20191215 | LC08_131039_20200827 |
27 | LC08_131040_20191215 | LC08_131040_20200827 |
28 | LC08_131041_20191129 | LC08_131041_20200827 |
29 | LC08_131042_20191129 | LC08_131042_20200827 |
30 | LC08_131036_20191231 | LC08_131036_20200624 |
31 | LC08_132037_20191206 | LC08_132038_20200903 |
32 | LC08_132038_20191206 | LC08_132037_20200903 |
33 | LC08_132039_20191206 | LC08_132039_20200903 |
34 | LC08_132040_20191206 | LC08_132040_20200903 |
35 | LC08_132041_20191206 | LC08_132041_20200701 |
36 | LC08_132036_20200107 | LC08_132036_20200802 |
37 | LC08_133037_20191229 | LC08_133038_20200825 |
38 | LC08_133038_20191229 | LC08_133037_20200825 |
39 | LC08_133039_20200114 | LC08_133039_20200825 |
40 | LC08_133040_20200114 | LC08_133040_20200825 |
41 | LC08_134037_20200325 | LC08_134038_20200901 |
42 | LC08_134038_20200325 | LC08_134037_20200917 |
43 | LC08_134036_20191102 | LC08_134036_20200917 |
References
- Huang, K.; Xia, J. High ecosystem stability of evergreen broadleaf forests under severe droughts. Glob. Chang. Biol. 2019, 25, 3494–3503. [Google Scholar] [CrossRef]
- Chen, X.H.; Xiang, K.L.; Lian, L.; Peng, H.W.; Erst, A.S.; Xiang, X.G.; Chen, Z.D.; Wang, W. Biogeographic diversification of Mahonia (Berberidaceae): Implications for the origin and evolution of East Asian subtropical evergreen broadleaved forests. Mol. Phylogenetics Evol. 2020, 151, 106910. [Google Scholar] [CrossRef]
- Hai, L.; Li, X.Q.; Zhang, J.B.; Xiang, X.G.; Li, R.Q.; Jabbour, F.; Ortiz, R.d.C.; Lu, A.M.; Chen, Z.D.; Wang, W. Assembly dynamics of East Asian subtropical evergreen broadleaved forests: New insights from the dominant Fagaceae trees. J. Integr. Plant Biol. 2022, 64, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Houlton, B.Z.; Wang, W.; Huang, W.; Xiao, Y.; Zhang, Q.; Liu, S.; Cao, M.; Wang, X.; Wang, S.; et al. Substantial reorganization of China’s tropical and subtropical forests: Based on the permanent plots. Glob. Chang. Biol. 2014, 20, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wei, X.; Wu, Y.; Liu, S.; Huang, Y.; Yan, J.; Zhang, D.; Zhang, Q.; Liu, J.; Meng, Z.; et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Glob. Chang. Biol. 2011, 17, 3736–3746. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Liu, X.; Zhou, G.; Yan, J. Decadal drought deaccelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China. Sci. Rep. 2016, 6, 28640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.Y.; Song, Y.C.; Liu, H.Y.; Piao, S.L. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Bot. Sin. 2002, 44, 1105–1122. [Google Scholar]
- Song, Y. Tentative classification scheme of evergreen broad-leaved forest of China. Acta Phytoecol. Sin. 2004, 28, 435–448. [Google Scholar]
- Sun, S. Concrning the Vegetation Chinese Regionalization Map as a Part of the Natural Geographical Atlas of the Peoples Republic of China. Chin. J. Plant Ecol. 1998, 22, 523–537. [Google Scholar]
- Song, Y.; Yan, E.; Song, K. Synthetic comparison of eight dynamics plots in evergreen broadleaf forests, China. Biodivers. Sci. 2015, 23, 139–148. [Google Scholar] [CrossRef]
- Peng, S.; You, W.; Zheng, Z.; Wang, L. Effects of recent 60 years climate change on net primary productivity of evergreen broadleaved forest in Tiantong region of Zhejiang Province. Chin. J. Ecol. 2011, 30, 502–507. [Google Scholar]
- Xu, F.; Jiao, H.; Ding, X.; Ye, Q.; Chen, F.; Lin, Y. Spatialtemporal Characteristics of NPP in Subtropical Evergreen Broad-leaved Forests. J. Northwest For. Univ. 2019, 34, 62–68. [Google Scholar]
- Qiao, L.; Schaefer, D.A.; Zou, X. Variations in net litter nutrient input associated with tree species influence on soil nutrient contents in a subtropical evergreen broad-leaved forest. Chin. Sci. Bull. 2014, 59, 46–53. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, A.; Zou, S.; Xiong, X.; Liu, S.; Chu, G.; Zhang, Q.; Liu, J.; Tang, X.; Yan, J.; et al. Relationships between tree diversity and biomass/productivity and their influence factors in a lower subtropical evergreen broad-leaved forest. Biodivers. Sci. 2021, 29, 1435–1446. [Google Scholar] [CrossRef]
- Franklin, S. How a national vegetation classification can help ecological research and management. Front. Ecol. Environ. 2015, 13, 185–186. [Google Scholar] [CrossRef]
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Wan, H.; Tang, Y.; Jing, L.; Li, H.; Qiu, F.; Wu, W. Tree species classification of forest stands using multisource remote sensing data. Remote Sens. 2021, 13, 144. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Xu, E.; Cuo, Y.; Chen, E.; Li, Z.; Zhao, L.; Liu, Q. An Estimation Model for Regional Forest Canopy Closure Combined with UAV LiDAR and High Spatial Resolution Satellite Remote Sensing Data. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1298–1308. [Google Scholar]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, S.; Gill, L.; Regan, S.; Naughton, O.; Johnston, P.; Waldren, S.; Ghosh, B. Mapping Vegetation Communities Inside Wetlands Using Sentinel-2 Imagery in Ireland. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102083. [Google Scholar] [CrossRef]
- Wakulinśka, M.; Marcinkowska-Ochtyra, A. Multi-temporal sentinel-2 data in classification of mountain vegetation. Remote Sens. 2020, 12, 2696. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q. Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Rokni, K.; Musa, T.A. Normalized difference vegetation change index: A technique for detecting vegetation changes using Landsat imagery. Catena 2019, 178, 59–63. [Google Scholar] [CrossRef]
- Zhai, Y.; Roy, D.P.; Martins, V.S.; Zhang, H.K.; Yan, L.; Li, Z. Conterminous United States Landsat-8 top of atmosphere and surface reflectance tasseled cap transformation coefficients. Remote Sens. Environ. 2022, 274, 112992. [Google Scholar] [CrossRef]
- Schmidt, J.; Fassnacht, F.E.; Förster, M.; Schmidtlein, S. Synergetic use of Sentinel-1 and Sentinel-2 for assessments of heathland conservation status. Remote Sens. Ecol. Conserv. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Blacker, C.; Gaulton, R.; Zhu, Q.; Yang, M.; Yang, G.; Zhang, J.; Yang, Y.; Yang, M.; et al. Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV. Remote Sens. 2023, 15, 854. [Google Scholar] [CrossRef]
- Potočnik Buhvald, A.; Račič, M.; Immitzer, M.; Oštir, K.; Veljanovski, T. Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sens. 2022, 14, 3387. [Google Scholar] [CrossRef]
- Zeferino, L.B.; Souza, L.F.T.d.; Amaral, C.H.d.; Fernandes Filho, E.I.; de Oliveira, T.S. Does environmental data increase the accuracy of land use and land cover classification? Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102128. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Zhang, H. A fuzzy topology-based maximum likelihood classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, 103–114. [Google Scholar] [CrossRef]
- Li, H.; Wan, J.; Liu, S.; Sheng, H.; Xu, M. Wetland Vegetation Classification through Multi-Dimensional Feature Time Series Remote Sensing Images Using Mahalanobis Distance-Based Dynamic Time Warping. Remote Sens. 2022, 14, 501. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D.; Ayhan, B.; Li, J.; Bernabe, S.; Plaza, A. An accurate vegetation and non-vegetation differentiation approach based on land cover classification. Remote Sens. 2020, 12, 3880. [Google Scholar] [CrossRef]
- Niazmardi, S.; Homayouni, S.; Safari, A.; McNairn, H.; Shang, J.; Beckett, K. Histogram-based spatio-temporal feature classification of vegetation indices time-series for crop mapping. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 34–41. [Google Scholar] [CrossRef]
- Wan, R.; Wang, P.; Wang, X.; Yao, X.; Dai, X. Mapping Aboveground Biomass of Four Typical Vegetation Types in the Poyang Lake Wetlands Based on Random Forest Modelling and Landsat Images. Front. Plant Sci. 2019, 10, 1281. [Google Scholar] [CrossRef] [PubMed]
- Barrett, B.; Raab, C.; Cawkwell, F.; Green, S. Upland vegetation mapping using Random Forests with optical and radar satellite data. Remote Sens. Ecol. Conserv. 2016, 2, 212–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Jeong, M.; Nam, J.; Ko, B.C. Lightweight Multilayer Random Forests for Monitoring Driver Emotional Status. IEEE Access 2020, 8, 60344–60354. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, X.; Li, G.; Chen, Y.; Lu, D. Integration of ZiYuan-3 multispectral and stereo imagery for mapping urban vegetation using the hierarchy-based classifier. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102594. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Hierarchical classification with multi-path selection based on granular computing. Artif. Intell. Rev. 2021, 54, 2067–2089. [Google Scholar] [CrossRef]
- Zhao, S.; Han, Y.; Zou, Q.; Hu, Q. Hierarchical support vector machine based structural classification with fused hierarchies. Neurocomputing 2016, 214, 86–92. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, S.; Xie, Z.; Lu, D.; Chen, E. Mapping multiple tree species classes using a hierarchical procedure with optimized node variables and thresholds based on high spatial resolution satellite data. GIScience Remote Sens. 2020, 57, 526–542. [Google Scholar] [CrossRef]
- Cerri, R.; Barros, R.C.; De Carvalho, A.C.P.L.F. Hierarchical multi-label classification using local neural networks. J. Comput. Syst. Sci. 2014, 80, 39–56. [Google Scholar] [CrossRef]
- Sola, I.; González-Audícana, M.; Álvarez-Mozos, J. Multi-criteria evaluation of topographic correction methods. Remote Sens. Environ. 2016, 184, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, H.; Wang, X. Extraction of mountain vegetation information based on vegetation distinguished and shadow eliminated vegetation index. Trans. Chin. Soc. Agric. Eng. 2019, 35, 135–144. [Google Scholar]
- Markert, K.N.; Markert, A.M.; Mayer, T.; Nauman, C.; Haag, A.; Poortinga, A.; Bhandari, B.; Thwal, N.S.; Kunlamai, T.; Chishtie, F.; et al. Comparing Sentinel-1 surface water mapping algorithms and radiometric terrain correction processing in southeast Asia utilizing Google Earth Engine. Remote Sens. 2020, 12, 2469. [Google Scholar] [CrossRef]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide to Landsat preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; He, T.; Li, A.; Li, S. Evaluation and intercomparison of topographic correction methods based on landsat images and simulated data. Remote Sens. 2021, 13, 4120. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Tan, B.; Frantz, D.; Radeloff, V.C. Integrated topographic corrections improve forest mapping using Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102716. [Google Scholar] [CrossRef]
- Yin, G.; Li, A.; Wu, S.; Fan, W.; Zeng, Y.; Yan, K.; Xu, B.; Li, J.; Liu, Q. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction. Remote Sens. Environ. 2018, 215, 184–198. [Google Scholar] [CrossRef]
- Jiang, H.; Jia, K.; Zhao, X.; Wei, X.; Wang, B.; Yao, Y.; Zhang, X.; Jiang, B. Review on the theory, method, and research progress of leaf area index estimation in mountainous areas. J. Remote Sens. 2020, 24, 1433–1449. [Google Scholar]
- Guo, Y.; Wu, T.; Luo, J.; Shi, H.; Hao, L. Remote Sensing Mapping of Mountain Vegetation Via Uncertainty-based Iterative Optimization. J. Geo-information Sci. 2022, 24, 1406–1419. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, G.; Meng, Y.; Li, B.; Peng, B. The Effect of Topographic Correction on Forest Tree Species Classification Accuracy. Remote Sens. 2020, 12, 787. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.Y.; Yoda, K. Climate and vegetation in China V. Effect of climatic factors on the upper limit of distribution of evergreen broadleaf forest. Ecol. Res. 1991, 6, 113–125. [Google Scholar] [CrossRef]
- He, J.; Chen, W.; Li, J. Community diversity of the main types of the evergreen broad-leaved forest in the eastern part of the middle subtropical China. Acta Phytoecol. Sin. 1998, 22, 303–311. [Google Scholar]
- Song, Y.; Chen, X.; Wang, X. Studies on Evergreen Broad-leaved Forests of China: A Retrospect and Prospect. J. East China Norm. Univ. 2005, 1, 1–9. [Google Scholar]
- Collaborative, S.V. Vegetation in Sichuan; Sichuan People’s Publishing House: Chengu, China, 1980. [Google Scholar]
- Miller, D.L.; Alonzo, M.; Meerdink, S.K.; Allen, M.A.; Tague, C.L.; Roberts, D.A.; McFadden, J.P. Seasonal and interannual drought responses of vegetation in a California urbanized area measured using complementary remote sensing indices. ISPRS J. Photogramm. Remote Sens. 2022, 183, 178–195. [Google Scholar] [CrossRef]
- Mullissa, A.; Vollrath, A.; Odongo-Braun, C.; Slagter, B.; Balling, J.; Gou, Y.; Gorelick, N.; Reiche, J. Sentinel-1 sar backscatter analysis ready data preparation in google earth engine. Remote Sens. 2021, 13, 1954. [Google Scholar] [CrossRef]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Garg, M.; Dhiman, G. A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput. Appl. 2021, 33, 1311–1328. [Google Scholar] [CrossRef]
- Johnstone, I.M.; Paul, D. PCA in High Dimensions: An Orientation. Proc. IEEE 2018, 106, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Plauborg, F.; Thomsen, A.G.; Andersen, M.N. A RVI/LAI-reference curve to detect N stress and guide N fertigation using combined information from spectral reflectance and leaf area measurements in potato. Eur. J. Agron. 2017, 87, 1–7. [Google Scholar] [CrossRef]
- Fang, M.; Ju, W.; Zhan, W.; Cheng, T.; Qiu, F.; Wang, J. A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves. Remote Sens. Environ. 2017, 196, 13–27. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Kämäri, I.; Koskinen, M.; Tanhuanpää, T.; Valkeapää, A.; Vasander, H. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 2016, 139, 127–136. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Q.; Ren, H.; Wang, D.; Zhao, C.; Zhao, W. Spatial pattern variation of artificial sand-binding vegetation based on UAV imagery and its influencing factors in an oasis–desert transitional zone Ying. Ecol. Indic. J. 2022, 141, 109068. [Google Scholar] [CrossRef]
- Hagedorn, F.; Gavazov, K.; Alexander, J.M. Above- And belowground linkages shape responses of mountain vegetation to climate change. Science 2019, 365, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yang, S.; Zhou, J.; Chu, B.; Ma, S.; Zhu, H.; Hua, L. Vegetation distribution along mountain environmental gradient predicts shifts in plant community response to climate change in alpine meadow on the Tibetan Plateau. Sci. Total Environ. 2019, 650, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Liao, K.; Lu, D.; Li, D. Examining Vegetation Change and Associated Spatial Patterns in Wuyishan National Park at Different Protection Levels. Remote Sens. 2022, 14, 1712. [Google Scholar] [CrossRef]
- Corney, P.M.; Duc, M.G.L.; Smart, S.M.; Kirby, K.J.; Bunce, R.G.H.; Marrs, R.H. Relationships between the species composition of forest field-layer vegetation and environmental drivers, assessed using a national scale survey. J. Ecol. 2006, 94, 383–401. [Google Scholar] [CrossRef]
- Lou, J.; Xu, G.; Wang, Z.; Yang, Z.; Ni, S. Multi-year ndvi values as indicator of the relationship between spatiotemporal vegetation dynamics and environmental factors in the qaidam basin, china. Remote Sens. 2021, 13, 1240. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel-vs. Object-based landsat 8 data classification in google earth engine using random forest: The case study of maiella national park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Aalto, J.; Tyystjärvi, V.; Niittynen, P.; Kemppinen, J.; Rissanen, T.; Gregow, H.; Luoto, M. Microclimate temperature variations from boreal forests to the tundra. Agric. For. Meteorol. 2022, 323, 109037. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, B.; Ou, G. Displacement distribution and climax explanation on semi-humid and humid evergreen broadleaved forests using niche analysis of Cyclobalanopsis glauca and C. glaucoides in China. Guihaia 2022, 42, 460–469. [Google Scholar] [CrossRef]
- Hua, Z.H.U. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China. Chin. J. Plant Ecol. 2021, 45, 224–241. [Google Scholar] [CrossRef]
- Grubb, P.J. Interpretation of the “Massenerhebung” effect on tropical mountains. Nature 1971, 229, 44–45. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xu, Y.; Ge, H.; Yang, W. Vegetation growth variation in relation to topography in Horqin Sandy Land. Ecol. Indic. 2020, 113, 106215. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Y.; Yan, F. Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 4830. [Google Scholar] [CrossRef]
Datasets | Spatial Resolution | Temporal Resolution |
---|---|---|
Landsat 8 | 30 m | 16 days |
Sentinel-1 | 10 m | 12 days |
NASADEM | 30 m | |
Precipitation data | Monthly | |
Sunshine duration data | Monthly |
Number of Field Sample Plot | Number of Interpreted Sample Plots | Number of Sample Plots | Buffer Distance | Sample Areas (m2) | |
---|---|---|---|---|---|
Forests | 6866 | 0 | 6000 | 30 m | 16,964,586 |
Non-forests | 0 | 1000 | 1000 | 70 m | 15,393,804 |
Evergreen forests | 3049 | 0 | 3000 | 30 m | 8,482,309 |
Non-evergreen forests | 3817 | 0 | 3000 | 30 m | 8,482,309 |
Evergreen broad-leaved forests | 1389 | 111 | 1500 | 30 m | 4,241,150 |
Evergreen non-broad-leaved forests | 1660 | 0 | 1500 | 30 m | 4,241,150 |
HEBF | 1046 | 0 | 1000 | 30 m | 3,141,592 |
SEBF | 343 | 157 | 500 | 45 m | 3,179,250 |
Layer | Classifier | Features Group |
---|---|---|
Layer 1 | RF | Spectral features |
SVM | ||
GTB | ||
Layer 2 | RF | Spectral features Temporal features |
SVM | ||
GTB | ||
Layer 3 | RF | Spectral features Temporal features Sentinel 1 features |
SVM | ||
GTB | ||
Layer 4 | RF | Spectral features Temporal features Sentinel 1 features Environment variables |
SVM | ||
GTB |
Layers | Classifier | Optimal Parameters | PA | UA | OA | Kappa | |
---|---|---|---|---|---|---|---|
Layer 1 | Forest | RF | Ntree = 85 Kfold = 3 | 97.92% | 97.92% | 97.98% | 0.96 |
Non-forest | 98.04% | 98.04% | |||||
Forest | SVM | Kfold = 3 | 99.98% | 90.57% | 94.95% | 0.89 | |
Non-forest | 90.20% | 99.98% | |||||
Forest | GTB | Ntree = 10 Kfold = 6 | 95.83% | 97.87% | 96.97% | 0.94 | |
Non-forest | 96.15% | 96.15% | |||||
Layer 2 | Evergreen forest | RF | Ntree = 30 Kfold = 3 | 93.48% | 95.56% | 93.51% | 0.87 |
Non-evergreen forest | 93.55% | 90.63% | |||||
Evergreen forest | SVM | Kfold = 9 | 62.16% | 82.14% | 75.32% | 0.50 | |
Non-evergreen forest | 87.50% | 71.43% | |||||
Evergreen forest | GTB | Ntree = 60 Kfold = 10 | 91.38% | 96.36% | 91.25% | 0.79 | |
Non-evergreen forest | 90.91% | 80.00% | |||||
Layer 3 | Evergreen broad-leaved forest | RF | Ntree = 30 Kfold = 7 | 98.55% | 97.14% | 97.60% | 0.95 |
Evergreen non-broad-leaved forest | 98.18% | 96.43% | |||||
Evergreen broad-leaved forest | SVM | Kfold = 3 | 98.04% | 90.91% | 94.92% | 0.90 | |
Evergreen non-broad-leaved forest | 92.54% | 98.41% | |||||
Evergreen broad-leaved forest | GTB | Ntree = 50 Kfold = 7 | 98.15% | 94.64% | 96.61% | 0.93 | |
Evergreen non-broad-leaved forest | 95.31% | 98.39% | |||||
Extraction accuracy of the evergreen broad-leaved forest using a hierarchy-based classifier | 90.21% | 90.90% | 89.42% | 0.79 |
Environmental Variables | Classes | Environmental Variables | Classes |
---|---|---|---|
Wpre-min | 5 | Wssd-min | 10 |
Wpre | 5 | Wssd | 10 |
Wpre-max | 5 | Wssd-max | 10 |
Dpre-min | 5 | Dssd-min | 8 |
Dpre | 5 | Dssd | 8 |
Dpre-max | 5 | Dssd-max | 8 |
WDpre-min | 6 | WDssd-min | 10 |
WDpre | 8 | WDssd | 10 |
WDpre-max | 6 | WDssd-max | 10 |
Elevation | 8 | Wlst | 8 |
Slope | 8 | Dlst | 8 |
Aspect | 9 | WDlst | 8 |
Classifier | Optimal Parameters | PA | UA | OA | Kappa | ||
---|---|---|---|---|---|---|---|
Layer 4’s accuracy | HEBF | RF | Ntree = 55 Kfold = 5 | 97.22% | 99.98% | 98.31% | 0.96 |
SEBF | 99.99% | 95.83% | |||||
HEBF | SVM | Kfold = 7 | 99.98% | 94.87% | 96.72% | 0.93 | |
SEBF | 91.67% | 99.98% | |||||
HEBF | GTB | Ntree = 50 Kfold = 1 | 99.97% | 92.50% | 95.09% | 0.89 | |
SEBF | 87.50% | 99.98% | |||||
Hierarchy-based classifier’s accuracy | HEBF | 87.70% | 90.88% | 87.91% | 0.76 | ||
SEBF | 90.20% | 87.11% |
Layer | Classifier | Optimal Parameters | PA | UA | OA | Kappa | |
---|---|---|---|---|---|---|---|
Layer 1 | Forest | RF | Ntree = 50 | 94.83% | 90.16% | 90.91% | 0.81 |
Non-forest | Kfold = 2 | 85.37% | 92.11% | ||||
Layer 2 | Evergreen forest | RF | Ntree = 30 | 90.91% | 90.91% | 87.80% | 0.72 |
Non-evergreen forest | Kfold = 10 | 81.48% | 81.48% | ||||
Layer 3 | Evergreen broad-leaved forest | RF | Ntree = 55 | 87.01% | 95.71% | 89.60% | 0.78 |
Evergreen non-broad-leaved forest | Kfold = 9 | 93.7% | 81.82% | ||||
Layer 4 | HEBF | RF | Ntree = 60 | 97.22% | 92.11% | 93.44% | 0.86 |
SEBF | Kfold = 8 | 88.00% | 95.65% | ||||
Hierarchical accuracy | HEBF | 72.93% | 72.26% | 66.83% | 0.40 | ||
SEBF | 66.01% | 75.04% |
Layer | Training Parameters | PA | UA | OA | Kappa |
---|---|---|---|---|---|
HEBF | Ntree = 50 Kfold = 7 | 78.57% | 89.19% | 84.88% | 0.70 |
SEBF | 90.91% | 81.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Peng, P.; Bai, M.; Wang, X.; Zhang, L.; Hu, J.; Wang, M.; Wang, X.; Wang, J.; Zhang, D.; et al. Vegetation Subtype Classification of Evergreen Broad-Leaved Forests in Mountainous Areas Using a Hierarchy-Based Classifier. Remote Sens. 2023, 15, 3053. https://doi.org/10.3390/rs15123053
Zhang S, Peng P, Bai M, Wang X, Zhang L, Hu J, Wang M, Wang X, Wang J, Zhang D, et al. Vegetation Subtype Classification of Evergreen Broad-Leaved Forests in Mountainous Areas Using a Hierarchy-Based Classifier. Remote Sensing. 2023; 15(12):3053. https://doi.org/10.3390/rs15123053
Chicago/Turabian StyleZhang, Shiqi, Peihao Peng, Maoyang Bai, Xiao Wang, Lifu Zhang, Jiao Hu, Meilian Wang, Xueman Wang, Juan Wang, Donghui Zhang, and et al. 2023. "Vegetation Subtype Classification of Evergreen Broad-Leaved Forests in Mountainous Areas Using a Hierarchy-Based Classifier" Remote Sensing 15, no. 12: 3053. https://doi.org/10.3390/rs15123053
APA StyleZhang, S., Peng, P., Bai, M., Wang, X., Zhang, L., Hu, J., Wang, M., Wang, X., Wang, J., Zhang, D., Sun, X., & Dai, X. (2023). Vegetation Subtype Classification of Evergreen Broad-Leaved Forests in Mountainous Areas Using a Hierarchy-Based Classifier. Remote Sensing, 15(12), 3053. https://doi.org/10.3390/rs15123053