Vegetation Greening and Its Response to a Warmer and Wetter Climate in the Yellow River Basin from 2000 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Trend Analysis
2.3.2. Partial Correlation Analysis
2.3.3. Residual Analysis
3. Results
3.1. Vegetation Greening Derived by EVI from 2000 to 2020
3.1.1. Temporal Variations of EVI
3.1.2. Spatial Patterns of EVI Greening
3.2. Climate Change from 1991 to 2020
3.2.1. Interannual Trend of Climatic Variations
3.2.2. Spatial Distribution of Climate Change
3.3. Effects of Climate Change on EVI Greening
3.4. Spatial Residual Analysis
3.5. Relative Contributions of Climate Change and Human Activities to Vegetation Greening
4. Discussion
4.1. Variations in Vegetation Coverage and Climatic Factors
4.2. Relationship between Vegetation Greening and Climate Change
4.3. Impacts of Climate Change and Human Activities on Vegetation Greening
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forzieri, G.; Miralles, D.G.; Ciais, P.; Alkama, R.; Ryu, Y.; Duveiller, G.; Zhang, K.; Robertson, E.; Kautz, M.; Martens, B.; et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Chang. 2020, 10, 356–362. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Sivakumar, B.; Long, A.; Qiu, L.; Chen, J.; Wang, L.; Liu, S.; Hu, H. Climatic and hydrologic controls on net primary production in a semiarid loess watershed. J. Hydrol. 2019, 568, 803–815. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Chen, Y.; Mindje Kayumba, P.; Wang, X.; Liu, C.; Long, Y.; Sun, F. Biophysical impacts of vegetation dynamics largely contribute to climate mitigation in High Mountain Asia. Agric. For. Meteorol. 2022, 327, 109233. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Ciais, P.; Schelhaas, M.J.; Zaehle, S.; Piao, S.L.; Cescatti, A.; Liski, J.; Luyssaert, S.; Le-Maire, G.; Schulze, E.D.; Bouriaud, O.; et al. Carbon accumulation in European forests. Nat. Geosci. 2008, 1, 425–429. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Wang, Y.-P.; Canadell, J.G.; Chiew, F.H.S.; Beringer, J.; Li, L.; Miralles, D.G.; Piao, S.; Zhang, Y. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 2017, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Ogutu, B.O.; D’Adamo, F.; Dash, J. Impact of vegetation greening on carbon and water cycle in the African Sahel-Sudano-Guinean region. Glob. Planet. Chang. 2021, 202, 103524. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C.; et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Feng, X.; Fu, B.; Wang, S.; Ji, F.; Pan, S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Qiu, B.; Ye, Z.; Chen, C.; Tang, Z.; Chen, Z.; Huang, H.; Zhao, Z.; Xu, W.; Berry, J. Dense canopies browning overshadowed by global greening dominant in sparse canopies. Sci. Total Environ. 2022, 826, 154222. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Le, T.S.; Harper, R.; Dell, B. Application of Remote Sensing in Detecting and Monitoring Water Stress in Forests. Remote Sens. 2023, 15, 3360. [Google Scholar] [CrossRef]
- Norby, R.J.; Warren, J.M.; Iversen, C.M.; Medlyn, B.E.; McMurtrie, R.E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 2010, 107, 19368–19373. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Ciais, P.; Peñuelas, J.; Wang, X.; Keenan, T.F.; Peng, S.; Berry, J.A.; Wang, K.; Mao, J.; et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 2019, 3, 772–779. [Google Scholar] [CrossRef]
- Keenan, T.F.; Riley, W.J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 2018, 8, 825–828. [Google Scholar] [CrossRef]
- Doughty, C.E.; Metcalfe, D.B.; Girardin, C.A.J.; Amézquita, F.F.; Cabrera, D.G.; Huasco, W.H.; Silva-Espejo, J.E.; Araujo-Murakami, A.; da Costa, M.C.; Rocha, W.; et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 2015, 519, 78–82. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Ge, C.; Sun, S.; Yao, R.; Sun, P.; Li, M.; Bian, Y. Long-term vegetation phenology changes and response to multi-scale meteorological drought on the Loess Plateau, China. J. Hydrol. 2022, 614, 128605. [Google Scholar] [CrossRef]
- Tian, F.; Liu, L.-Z.; Yang, J.-H.; Wu, J.-J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Lu, C.; Hou, M.; Liu, Z.; Li, H.; Lu, C. Variation Characteristic of NDVI and its Response to Climate Change in the Middle and Upper Reaches of Yellow River Basin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8484–8496. [Google Scholar] [CrossRef]
- Jian, S.; Zhang, Q.; Wang, H. Spatial–Temporal Trends in and Attribution Analysis of Vegetation Change in the Yellow River Basin, China. Remote Sens. 2022, 14, 4607. [Google Scholar] [CrossRef]
- Lavagnini, I.; Badocco, D.; Pastore, P.; Magno, F. Theil–Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits. Talanta 2011, 87, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Chen, A.; He, B.; Wang, H.; Huang, L.; Zhu, Y.; Lv, A. Notable shifting in the responses of vegetation activity to climate change in China. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 60–66. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Cao, W.; Wu, D.; Huang, L.; Pan, M.; Huhe, T. Determinizing the contributions of human activities and climate change on greening in the Beijing-Tianjin-Hebei Region, China. Sci. Rep. 2021, 11, 21201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, H.; Zuo, Q.; Yu, J.; Li, Y. Spatialtemporal change of fractional vegetation cover in the Yellow River Basin during 2000–2019. Resour. Sci. 2021, 43, 849–858. [Google Scholar] [CrossRef]
- Jin, K.; Wang, F.; Han, J.; Shi, S.; Ding, W. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982–2015. Acta Geogr. Sin. 2020, 75, 961–974. [Google Scholar]
- Zhan, C.; Liang, C.; Zhao, L.; Jiang, S.; Niu, K.; Zhang, Y.; Cheng, L. Vegetation Dynamics and its Response to Climate Change in the Yellow River Basin, China. Front. Environ. Sci. 2022, 10, 892747. [Google Scholar] [CrossRef]
- He, Z.; He, J. Spatio-temporal variation of vegetation cover based on SPOT-VGT in Yellow River Basin. Ecol. Environ. Sci. 2012, 21, 1655–1659. [Google Scholar] [CrossRef]
- Miao, C.; Yang, L.; Chen, X.; Gao, Y. The vegetation cover dynamics (1982–2006) in different erosion regions of the Yellow River Basin, China. Land Degrad. Dev. 2012, 23, 62–71. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Zhang, L.; Cao, S.; Sun, Q. Spatiotemporal changes of Gross Primary Production in the Yellow River Basin of China under the influence of climate-driven and human-activity. Glob. Ecol. Conserv. 2023, 46, e02550. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, G.; Wang, M.; Fan, X.; Wang, C. Characterisitics of climate change in the Yellow River Basin from 1961 to 2020. Meteorol. Environ. Sci. 2021, 44, 1–8. [Google Scholar]
- Wang, Y.; Tan, D.; Han, L.; Li, D.; Wang, X.; Lu, G.; Lin, J. Review of climate change in the Yellow River Basin. J. Desert Res. 2021, 41, 235–246. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Ma, J.; Gao, Y. Analysis of annual precipitation and extreme precipitation change in the upper Yellow River Basin in recent 50 years. Plateau Meteorol. 2019, 38, 124–135. [Google Scholar]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Ma, C.; Yan, Y.; Zhu, J.; Ji, Y.; Ma, C.; Luo, Y. Spatial differentiation characteristics of vegetation greening rates and climate attribution in China’s arid and semi-arid regions. Glob. Ecol. Conserv. 2023, 46, e02563. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Meng, X.; Lyu, S.; Yang, X.; Ao, Y.; Ma, D.; Shang, L.; Shu, L.; Chang, Y. Effect of snow cover on water and heat transfer in alpine meadows in the source region of Yellow River. Sci. Total Environ. 2023, 859, 160205. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982–2013). Glob. Planet. Chang. 2017, 148, 1–8. [Google Scholar] [CrossRef]
- Garonna, I.; de Jong, R.; Schaepman, M.E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Chang. Biol. 2016, 22, 1456–1468. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z.; Yang, C.; Ji, X.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agric. For. Meteorol. 2018, 263, 118–129. [Google Scholar] [CrossRef]
- Ren, S.; Chen, X.; Pan, C. Temperature-precipitation background affects spatial heterogeneity of spring phenology responses to climate change in northern grasslands (30° N–55° N). Agric. For. Meteorol. 2022, 315, 108816. [Google Scholar] [CrossRef]
- Su, R.; Yu, T.; Dayananda, B.; Bu, R.; Su, J.; Fan, Q. Impact of climate change on primary production of Inner Mongolian grasslands. Glob. Ecol. Conserv. 2020, 22, e00928. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.; Feng, Q. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. CATENA 2016, 145, 56–67. [Google Scholar] [CrossRef]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning and influential factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Qian, C.; Shao, L.; Hou, X.; Zhang, B.; Chen, W.; Xia, X. Detection and attribution of vegetation greening trend across distinct local landscapes under China’s Grain to Green Program: A case study in Shaanxi Province. CATENA 2019, 183, 104182. [Google Scholar] [CrossRef]
- Yao, R.; Cao, J.; Wang, L.; Zhang, W.; Wu, X. Urbanization effects on vegetation cover in major African cities during 2001–2017. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 44–53. [Google Scholar] [CrossRef]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef]
- Luo, L.; Ma, W.; Zhuang, Y.; Zhang, Y.; Yi, S.; Xu, J.; Long, Y.; Ma, D.; Zhang, Z. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic. 2018, 93, 24–35. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Henderson, M.; Wang, L.; Jiang, M.; Lu, X. Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China. J. Clim. 2022, 35, 5103–5117. [Google Scholar] [CrossRef]
- Ren, H.; Wen, Z.; Liu, Y.; Lin, Z.; Han, P.; Shi, H.; Wang, Z.; Su, T. Vegetation response to changes in climate across different climate zones in China. Ecol. Indic. 2023, 155, 110932. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.; Zheng, Z.; Du, J. Vegetation cover change and its response to climate extremes in the Yellow River Basin. Sci. Total Environ. 2023, 905, 167366. [Google Scholar] [CrossRef]
EVI Trend | β(EVICC) | β(EVIHA) | Relative Contributions (%) | Explanation | |
---|---|---|---|---|---|
Climate Change (CC) | Human Activities (HA) | ||||
Greening | >0 | >0 | Climate change and human activities both promote EVI growth | ||
>0 | <0 | 100 | 0 | Climate change promotes EVI growth | |
<0 | >0 | 0 | 100 | Human activities promote EVI growth | |
Browning | <0 | <0 | Climate change and human activities both inhibit EVI growth | ||
<0 | >0 | 100 | 0 | Climate change inhibits EVI growth | |
>0 | <0 | 0 | 100 | Human activities inhibit EVI growth |
Time Scale | Vegetation Sub-Region | Slope of EVI (β) | Area Percent of Variation Trend (%) | ||||
---|---|---|---|---|---|---|---|
Significant Greening | Slight Greening | Stable or Non-Vegetated | Slight Browning | Significant Browning | |||
Annual | I | 0.0036 ** | 87.71 | 7.95 | 0.52 | 2.43 | 1.39 |
II | 0.0017 * | 57.88 | 30.54 | 3.10 | 7.38 | 1.10 | |
III | 0.0022 ** | 83.82 | 12.21 | 0.94 | 2.12 | 0.91 | |
IV | 0.0008 | 50.99 | 34.78 | 4.76 | 7.24 | 2.23 | |
V | 0.0007 | 33.83 | 40.48 | 6.40 | 16.55 | 2.73 | |
Growing season | I | 0.0049 ** | 84.75 | 10.27 | 0.48 | 3.06 | 1.45 |
II | 0.0024 | 51.83 | 35.69 | 2.46 | 9.04 | 0.98 | |
III | 0.0031 ** | 81.35 | 14.72 | 0.65 | 2.30 | 0.98 | |
IV | 0.0013 | 53.23 | 35.83 | 3.01 | 6.00 | 1.93 | |
V | 0.0012 | 37.10 | 42.72 | 3.89 | 13.91 | 2.38 | |
Spring | I | 0.0032 * | 67.10 | 20.87 | 0.92 | 7.44 | 3.66 |
II | 0.002 | 41.76 | 47.67 | 2.55 | 7.03 | 0.99 | |
III | 0.0014 ** | 76.77 | 14.84 | 1.50 | 4.34 | 2.56 | |
IV | 0.0005 | 44.41 | 31.76 | 5.34 | 13.97 | 4.52 | |
V | 0.0005 | 28.52 | 39.39 | 6.69 | 23.70 | 1.70 | |
Summer | I | 0.0058 ** | 77.05 | 16.66 | 0.49 | 4.38 | 1.42 |
II | 0.0027 | 43.62 | 40.13 | 1.77 | 12.93 | 1.54 | |
III | 0.0036 * | 67.52 | 26.47 | 0.84 | 4.00 | 1.17 | |
IV | 0.0016 | 36.06 | 50.17 | 2.99 | 8.74 | 2.04 | |
V | 0.0017 | 30.35 | 48.95 | 2.64 | 15.92 | 2.13 | |
Autumn | I | 0.0034 ** | 71.80 | 21.42 | 0.86 | 4.84 | 1.08 |
II | 0.0013 | 23.11 | 48.31 | 4.00 | 22.77 | 1.80 | |
III | 0.0028 ** | 77.90 | 17.98 | 0.85 | 2.55 | 0.72 | |
IV | 0.001 | 34.18 | 50.22 | 4.14 | 9.76 | 1.70 | |
V | 0.0006 | 17.39 | 49.13 | 5.26 | 25.62 | 2.61 |
Partial Correlation Coefficient | Sub-Region | Annual | Growing Season | Spring | Summer | Autumn |
---|---|---|---|---|---|---|
PCCEVI-TMP | I | 0.253 | 0.144 | 0.328 * | 0.062 | 0.234 |
II | 0.292 | 0.30 | 0.228 | 0.171 | 0.217 | |
III | 0.13 | 0.034 | 0.412 * | −0.05 | −0.062 | |
IV | 0.157 | 0.106 | 0.239 | 0.054 | −0.136 | |
V | 0.252 | 0.197 | 0.179 | 0.199 | 0.268 | |
YRB | 0.199 | 0.108 | 0.335 * | 0.038 | 0.103 | |
PCCEVI-PRE | I | 0.30 | 0.273 | 0.349 | 0.301 | −0.022 |
II | 0.231 | 0.189 | 0.287 | 0.089 | 0.09 | |
III | 0.481 ** | 0.467 ** | 0.272 | 0.385 * | 0.127 | |
IV | 0.278 | 0.289 | 0.118 | 0.16 | 0.135 | |
V | 0.105 | 0.20 | 0.068 | 0.256 | −0.084 | |
YRB | 0.343 * | 0.342 * | 0.263 * | 0.321 * | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Zhu, Y.; Liu, Y.; Wang, S. Vegetation Greening and Its Response to a Warmer and Wetter Climate in the Yellow River Basin from 2000 to 2020. Remote Sens. 2024, 16, 790. https://doi.org/10.3390/rs16050790
Bai Y, Zhu Y, Liu Y, Wang S. Vegetation Greening and Its Response to a Warmer and Wetter Climate in the Yellow River Basin from 2000 to 2020. Remote Sensing. 2024; 16(5):790. https://doi.org/10.3390/rs16050790
Chicago/Turabian StyleBai, Yan, Yunqiang Zhu, Yingzhen Liu, and Shu Wang. 2024. "Vegetation Greening and Its Response to a Warmer and Wetter Climate in the Yellow River Basin from 2000 to 2020" Remote Sensing 16, no. 5: 790. https://doi.org/10.3390/rs16050790
APA StyleBai, Y., Zhu, Y., Liu, Y., & Wang, S. (2024). Vegetation Greening and Its Response to a Warmer and Wetter Climate in the Yellow River Basin from 2000 to 2020. Remote Sensing, 16(5), 790. https://doi.org/10.3390/rs16050790