Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Time Lag Analysis
2.3.2. Water Budget Analysis
2.3.3. Trend Analysis
2.3.4. Correlation Analysis and Partial Correlation Analysis
2.3.5. Geodetector Model
3. Results
3.1. Influence of the Hydrological Cycle on TWSA across China
3.2. Analysis of Driving Factors of the TWSA across China
3.3. Response of Vegetation Greenness to TWSA across China
3.4. Relationship between Vegetation and TWSA in Typical Ecological Regions
4. Discussion
5. Conclusions
- (1)
- The area of TWSA showed a decreasing trend of 61.16%, and only 38.84% of the region showed an increasing trend across China from 1982 to 2019. Simultaneously, the areas of significant decline were mainly distributed in North China, southeast Tibet, and Xinjiang in the northwest, and the areas of significant increase were primarily in the Qaidam Basin, the Yangtze River, and the Songhua River.
- (2)
- Vegetation showed a significant greening trend, and the increase accounted for 75.78% across China from 1982 to 2019. The positive correlation between NDVI and TWSA was 48.64% across China. Considering the lag effect between monthly NDVI and TWSA, precipitation, the lag time was shorter in arid and semi-arid regions dominated by grasslands, and longer in relatively humid regions dominated by forests and savannas.
- (3)
- TWSAs decreased with the increase in NDVI and ET in arid and semi-arid regions and increased with the increase in NDVI and ET in humid regions. The Geodetector model further discussed the influence of climate and human factors on the variability of TWSA. The results showed that the three most critical variables affecting TWSA were NDVI, precipitation, and ET, with 0.213, 0.198, and 0.162 values, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, X.; He, B.; Guo, L.; Miao, C.; Zhang, Y. Detecting hotspots of interactions between vegetation greenness and terrestrial water storage using satellite observations. Remote Sens. Environ. 2019, 231, 111259. [Google Scholar] [CrossRef]
- Meng, S.; Xie, X.; Zhu, B.; Wang, Y. The relative contribution of vegetation greening to the hydrological cycle in the Three-North region of China: A modelling analysis. J. Hydrol. 2020, 591, 125689. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.P.; Xiao, X.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiao, J.; Ju, W.; Xu, K.; Zhou, Y.; Zhao, Y. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 2016, 11, 094010. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. Catena 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Jiang, B.; Liang, S. Improved vegetation greenness increases summer atmospheric water vapor over Northern China. J. Geophys. Res. Atmos. 2013, 118, 8129–8139. [Google Scholar] [CrossRef]
- Wei, Z.; Yoshimura, K.; Wang, L.; Miralles, D.G.; Jasechko, S.; Lee, X. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, X.; Zou, Z.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Chen, B.; Wang, J.; Ye, H.; et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 2020, 11, 3471. [Google Scholar] [CrossRef]
- Zhao, M.; Geruo, A.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2020, 4, 56–62. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.A.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- van Dijke, A.J.H.; Herold, M.; Mallick, K.; Benedict, I.; Machwitz, M.; Schlerf, M.; Pranindita, A.; Theeuwen, J.J.E.; Bastin, J.F.; Teuling, A.J. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 2022, 15, 363–368. [Google Scholar] [CrossRef]
- Papagiannopoulou, C.; Miralles, D.G.; Dorigo, W.; Verhoest, N.E.C.; Depoorter, M.; Waegeman, W. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 2017, 12, 074016. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Guan, H.; Scanlon, B.R.; Simmons, C.T.; Jiang, L.; Xu, X. GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. J. Geophys. Res. Biogeosci. 2014, 119, 2245–2260. [Google Scholar] [CrossRef]
- Zeng, Z.; Piao, S.; Li, L.Z.X.; Wang, T.; Ciais, P.; Lian, X.; Yang, Y.; Mao, J.; Shi, X.; Myneni, R.B. Impact of Earth Greening on the Terrestrial Water Cycle. J. Clim. 2018, 31, 2633–2650. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef]
- Chen, A.; Guan, H.; Batelaan, O. Non-linear interactions between vegetation and terrestrial water storage in Australia. J. Hydrol. 2022, 613, 128226. [Google Scholar] [CrossRef]
- Andrew, R.L.; Guan, H.; Batelaan, O. Large-scale vegetation responses to terrestrial moisture storage changes. Hydrol. Earth Syst. Sci. 2017, 21, 4469–4478. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Duan, K.; Liu, B.; Chen, X. Assessing the large-scale plant-water relations using remote sensing products in the humid subtropical Pearl River Basin in south China. Hydrol. Earth Syst. Sci. 2020. [Google Scholar] [CrossRef]
- Song, C.; Ke, L.; Huang, B.; Richards, K.S. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective? Glob. Planet. Change 2015, 124, 1–9. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J12. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, N.; Zhang, X.; Chen, Z. Spatiotemporal Changes in China’s Terrestrial Water Storage From GRACE Satellites and Its Possible Drivers. J. Geophys. Res. Atmos. 2019, 124, 11976–11993. [Google Scholar] [CrossRef]
- Xie, X.; Liang, S.; Yao, Y.; Jia, K.; Meng, S.; Li, J. Detection and attribution of changes in hydrological cycle over the Three-North region of China: Climate change versus afforestation effect. Agric. For. Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557–558, 331–342. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Muller Schmied, H.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Ind. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Li, G.; Sun, Z.; Wang, X.; Zhang, X.; Zhang, W. Spatial and Temporal Heterogeneity Analysis of Water Conservation in Beijing-Tianjin-Hebei Urban Agglomeration Based on the Geodetector and Spatial Elastic Coefficient Trajectory Models. GeoHealth 2020, 4, e2020GH000248. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China. Remote Sens. 2021, 13, 5081. [Google Scholar] [CrossRef]
- Chu, J.; Su, X.; Wu, H.; Liu, Y.; Feng, K. Analysis of China’s terrestrial water storage and its component anomalies in recent 20 years. Water Resour. Pro. 2022, 1, 1–13. [Google Scholar]
- Zhang, Z.; Chen, X.; Xu, C.-Y.; Yuan, L.; Yong, B.; Yan, S. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years. J. Hydrol. 2011, 409, 81–93. [Google Scholar] [CrossRef]
- Jiang, P.; Ding, W.; Yuan, Y.; Ye, W.; Mu, Y. Interannual variability of vegetation sensitivity to climate in China. J. Environ. Manag. 2022, 301, 113768. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Kusche, J.; Chao, N.; Wang, Z.; Löcher, A. Long-Term (1979-Present) Total Water Storage Anomalies Over the Global Land Derived by Reconstructing GRACE Data. Geophys. Res. Lett. 2021, 48, e2021GL093492. [Google Scholar] [CrossRef]
- Reager, J.T.; Thomas, B.F.; Famiglietti, J.S. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci. 2014, 7, 588–592. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Zhao, M.; Geruo, A.; Velicogna, I.; Kimball, J.S. A Global Gridded Dataset of GRACE Drought Severity Index for 2002–14: Comparison with PDSI and SPEI and a Case Study of the Australia Millennium Drought. J. Hydrometeorol. 2017, 18, 2117–2129. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Aybar, C.; Wu, Q.; Bautista, L.; Yali, R.; Barja, A. rgee: An R package for interacting with Google Earth Engine. J. Open Sour. Soft. 2020, 5, 2272. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, Z.; Tian, J.; Kong, R.; Chen, X. Increasing Negative Impacts of Climatic Change and Anthropogenic Activities on Vegetation Variation on the Qinghai–Tibet Plateau during 1982–2019. Remote Sens. 2022, 14, 4735. [Google Scholar] [CrossRef]
- Zhe, M.; Zhang, X. Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecol. Ind. 2021, 124, 107431. [Google Scholar] [CrossRef]
- Sheffield, J.; Ferguson, C.R.; Troy, T.J.; Wood, E.F.; McCabe, M.F. Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett. 2009, 36, L07403. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Ahmadi, F.; Danandeh Mehr, A.; Safari, M.J.S. Drought modeling using classic time series and hybrid wavelet-gene expression programming models. J. Hydrol. 2020, 587, 125017. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Zhang, Z.; Kong, R.; Peng, Z.; Zhang, Q.; Chen, X. The increasing risk of future simultaneous droughts over the Yangtze River basin based on CMIP6 models. Stoch. Environ. Res. Risk Assess. 2023. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Peng, W.; Kuang, T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Change 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Change 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; van Dijk, A.I.J.M.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 2015, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.J.; Yu, G.R.; Hu, Z.M.; Wang, Q.F.; He, H.L.; Yan, J.H.; Wang, H.M.; Zhang, J.H. Spatiotemporal variations of T/ET (the ratio of transpiration to evapotranspiration) in three forests of Eastern China. Ecol. Ind. 2015, 52, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Ma, Z.; Li, M.; Zheng, Z. Quantitative Analysis of Terrestrial Water Storage Changes Under the Grain for Green Program in the Yellow River Basin. J. Geophys. Res.-Atmos. 2019, 124, 1336–1351. [Google Scholar] [CrossRef]
- Li, D.; Liu, K.; Wang, S.; Wu, T.; Li, H.; Bo, Y.; Zhang, H.; Huang, Y.; Li, X. Four decades of hydrological response to vegetation dynamics and anthropogenic factors in the Three-North Region of China and Mongolia. Sci. Total Environ. 2023, 857, 159546. [Google Scholar] [CrossRef] [PubMed]
- Asoka, A.; Wardlow, B.; Tsegaye, T.; Huber, M.; Mishra, V. A Satellite-Based Assessment of the Relative Contribution of Hydroclimatic Variables on Vegetation Growth in Global Agricultural and Nonagricultural Regions. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033228. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.O.; Malhi, Y.; Aragao, L.E.; Ladle, R.; Arai, E.; Barbier, N.; Phillips, O. Remote sensing detection of droughts in Amazonian forest canopies. New Phytol. 2010, 187, 733–750. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, S.; Liu, S.; Leng, G.; Peng, J.; Huang, Q.; Li, P. GRACE-Based Terrestrial Water Storage in Northwest China: Changes and Causes. Remote Sens. 2018, 10, 1163. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Jia, L.; Jiang, L.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 2017, 544, 46–57. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, C.; Gong, H.; Yeh, P.J.F.; Shen, Y.; Guo, Y.; Huang, Z.; Li, X. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett. 2017, 44, 190–199. [Google Scholar] [CrossRef]
- Zeng, L.; Li, J. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region. J. Geogr. Sci. 2019, 29, 1021–1038. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Su, F.; Li, Y.; Tong, K. Changes in Terrestrial Water Storage During 2003–2014 and Possible Causes in Tibetan Plateau. J. Geophys. Res.-Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Henderson, M.; Wang, L.; Jiang, M.; Lu, X. Vegetation Greening, Extended Growing Seasons, and Temperature Feedbacks in Warming Temperate Grasslands of China. J. Clim. 2022, 35, 5103–5117. [Google Scholar] [CrossRef]
- Morton, D.C.; Nagol, J.; Carabajal, C.C.; Rosette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 2014, 506, 221–224. [Google Scholar] [CrossRef] [Green Version]
Serial | Typical Natural Vegetation | Area (×104 km2) | Precipitation (mm) | Temperature (°C) |
---|---|---|---|---|
I | Coniferous forest, Broad-leaved mixed forest, Meadow | 123.81 | 518.21 | 2.44 |
II | Coniferous forest, Deciduous broad-leaved forest, Meadow | 31.70 | 511.09 | 9.66 |
III | Deciduous broad-leaved forest, Shrublands, Meadow | 80.89 | 468.31 | 5.93 |
IV | Broad-leaved mixed forest | 32.40 | 835.10 | 14.37 |
V | Evergreen broad-leaved forest | 179.92 | 1086.24 | 10.99 |
VI | Subtropical evergreen broad-leaved forest | 24.02 | 1753.20 | 17.11 |
VII | Evergreen broad-leaved forest | 57.06 | 1527.85 | 19.25 |
VIII | Evergreen broad-leaved forest, Broad-leaved mixed forest, Shrublands, Meadow | 85.26 | 709.23 | 4.29 |
IX | Alpine shrub meadow, alpine steppe | 333.89 | 183.66 | 3.31 |
Date | Period | Resolution | Source |
---|---|---|---|
GRACE TWSA (mm) | 1982–2019 | 0.5° × 0.5° | https://doi.org/10.5061/dryad.z612jm6bt, accessed on 15 May 2022 |
GLEAM ET (mm) | 1982–2019 | 0.25° × 0.25° | https://www.gleam.eu/, accessed on 21 July 2022 |
AVHRR NDVI | 1982–2019 | 0.05° × 0.05° | http://www.geodata.cn/, accessed on 14 July 2022 |
Precipitation (mm) | 1982–2019 | 0.5° × 0.5° | https://data.cma.cn/, accessed on 10 January 2021 |
Temperature (°C) | 1982–2019 | 0.5° × 0.5° | https://data.cma.cn/, accessed on 10 January 2021 |
Streamflow (mm3/s) | 1982–2019 | / | / |
Land cover (categorical) | 2019 | 0.05° × 0.05° | https://lpdaac.usgs.gov/products/mcd12c1v006/, accessed on 21 May 2023 |
Elevation (m) | / | 90 m | http://www.gscloud.cn/, accessed on 22 August 2022 |
Soil type (categorical) | / | 1 km | http://www.resdc.cn/, accessed on 18 June 2022 |
Population density (people/km2) | 2019 | 1 km | https://www.worldpop.org/, accessed on 10 May 2022 |
Category | Factors | Code | Unit |
---|---|---|---|
Natural factors | Elevation | X1 | m |
Slope | X2 | degree | |
Soil type | X3 | categorical | |
Temperature | X4 | °C | |
Precipitation | X5 | mm | |
ET | X6 | mm | |
NDVI | X7 | / | |
Human factors | Land cover | X8 | categorical |
Population density | X9 | people/km2 |
Interaction Relationship | Interaction Types |
---|---|
q(Xi∩Xj) < Min(q(Xi), q(Xj)) | Nonlinear-weaken |
Min(q(Xi), q(Xj)) < q(Xi∩Xj) < Max(q(Xi), q(Xj)) | Uni-variable weaken |
q(Xi∩Xj) = q(Xi) + q(Xj) | Independent |
Max(q(Xi), q(Xj)) < q(Xi∩Xj) < q(Xi) + q(Xj) | Bi-variable enhanced |
q(Xi∩Xj) > q(Xi) + q(Xj) | Nonlinear-enhanced |
Serial | TWSA | Precipitation | ET | Streamflow | ΔTWS (P-ET-R) |
---|---|---|---|---|---|
I | −0.72 ** | 0.02 | 0.48 ** | −0.28 | −0.07 |
II | −0.99 ** | 0.01 | 0.49 ** | −0.36 * | −0.27 |
III | −0.99 ** | 0.28 | 0.69 ** | −0.23 | −0.05 |
IV | −0.98 ** | −0.01 | 0.56 ** | −0.19 | −0.07 |
V | 0.97 ** | 0.04 | 0.81 ** | −0.08 | −0.28 |
VI | 0.95 ** | 0.19 | 0.84 ** | −0.02 | 0.09 |
VII | 0.92 ** | 0.10 | 0.74 ** | 0.06 | −0.06 |
VIII | −0.99 ** | −0.11 | 0.76 ** | −0.06 | −0.28 |
IX | −0.98 ** | 0.70 ** | 0.78 ** | 0.40 * | 0.06 |
Relationship | NDVI and TWSA | NDVI and Precipitation | ||||
---|---|---|---|---|---|---|
Spring | Summer | Autumn | Spring | Summer | Autumn | |
Positive | 52.79 | 60.45 | 57.86 | 65.99 | 56.87 | 73.43 |
Significant positive | 18.60 | 24.22 | 13.98 | 25.26 | 14.42 | 33.62 |
Negative | 47.21 | 39.55 | 42.14 | 34.01 | 43.13 | 26.57 |
Significant negative | 12.69 | 17.14 | 10.58 | 0.84 | 3.21 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, R.; Zhang, Z.; Zhang, Y.; Wang, Y.; Peng, Z.; Chen, X.; Xu, C.-Y. Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening. Remote Sens. 2023, 15, 3104. https://doi.org/10.3390/rs15123104
Kong R, Zhang Z, Zhang Y, Wang Y, Peng Z, Chen X, Xu C-Y. Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening. Remote Sensing. 2023; 15(12):3104. https://doi.org/10.3390/rs15123104
Chicago/Turabian StyleKong, Rui, Zengxin Zhang, Ying Zhang, Yiming Wang, Zhenhua Peng, Xi Chen, and Chong-Yu Xu. 2023. "Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening" Remote Sensing 15, no. 12: 3104. https://doi.org/10.3390/rs15123104
APA StyleKong, R., Zhang, Z., Zhang, Y., Wang, Y., Peng, Z., Chen, X., & Xu, C. -Y. (2023). Detection and Attribution of Changes in Terrestrial Water Storage across China: Climate Change versus Vegetation Greening. Remote Sensing, 15(12), 3104. https://doi.org/10.3390/rs15123104