Global Trends and Future Directions in Agricultural Remote Sensing for Wheat Scab Detection: Insights from a Bibliometric Analysis
Abstract
:1. Introduction
- (a)
- Highlight the major research efforts in the domain of ARS for wheat scab detection at the level of contributing authors, institutions, and countries.
- (b)
- Evaluate the contribution of key journals in the same area.
- (c)
- Classify and interpret the obtained literature and knowledge into brief knowledge clusters using co-occurring keywords.
- (d)
- Determine the research frontiers, knowledge foundation, and hot topics in the field of ARS for wheat scab detection for future studies.
- (e)
- Review the conducted studies for scab detection at different scales (grains, spike, and canopy) of wheat crops.
2. Data Collection and Bibliometric Methodology
2.1. Retrieval of Data from Web of Science
2.2. Schematic of the Study
2.3. CiteSpace-Based Bibliometric Analyses
3. Examination and Interpretation of Scientometrics Analysis
3.1. Bibliometric Analyses Based on Web of Science
3.2. Co-Citation Analysis
3.2.1. Document Co-Citation Analysis
3.2.2. Author Co-Citation Analysis
3.3. Co-Occurrence Keywords Analysis
3.4. Hotspots and Research Frontiers
3.5. Description of Cluster Analysis
3.6. New Trends and Recent Research Status in the Field of INISWS
- Regarding INISWS research, the most productive authors at the micro level are Jin X, Alisaac E., Barbedo J.G.A., Ropelewska, Zhang N., Ma H.Q., and others. Researchers who have been cited frequently in INISWS include Bauriegel E., Mahlein A.K., Barbedo J.G.A., Zhang J.C., and others.
- At the meso level, the Chinese Academy of Sciences, Anhui University, and the United States Department of Agriculture are the most active and effective contributors to INISWS research.
- At the macro level, China, the United States, Germany, Italy, Canada, France, and England are the most active and effective contributors to INISWS research. China and the United States have a much higher number of publications than the rest of the countries on the list, and the most likely explanation for this is the more robust funding support policy from both governments. The National Natural Science Foundation of China (NSFC), National Key Research and Development Program of China, National Key R D Program of China, UK Research Innovation, and others have provided the most funding for INISWS research.
- In terms of core journals, the most valuable publications that contributed were: Remote Sensing, Computers and Electronics in Agriculture, Frontiers in Plant Science, and Biosystems Engineering.
- The essential knowledge clusters under CiteSpace analysis were hyperspectral and fluorescence data, random forest, diffuse reflectance spectroscopy, and remote sensing.
- The hot research topics were crop disease, identification, feature selection, fusarium head blight, and classification.
- Recent advancements in scab monitoring or detection still need to produce conclusive findings, which are essentially needed.
3.7. Scab Examination in Wheat Using ARS
3.7.1. ARS for Scab Detection in Wheat Kernels
3.7.2. ARS for Scab Detection in Wheat Spikes
3.7.3. ARS for Scab Detection in the Wheat Canopy
3.7.4. Quantitative Models for Scab Disease
4. Limitations and Future Prospective
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qian, J.; Law, R.; Wei, J. Knowledge Mapping in Travel Website Studies: A Scientometric Review. Scand. J. Hosp. Tour. 2019, 19, 192–209. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y. Visualization Analysis of High-Speed Railway Research Based on CiteSpace. Transp. Policy 2020, 85, 1–17. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, A.; Wang, H.; Wang, Y.; Zhang, Z. Knowledge Structure and Research Progress in Wind Power Generation (WPG) from 2005 to 2020 Using CiteSpace Based Scientometric Analysis. J. Clean. Prod. 2021, 295, 126496. [Google Scholar] [CrossRef]
- Ahmed, A.; Azam, A.; Bhutta, M.M.A.; Khan, F.A.; Aslam, R.; Tahir, Z. Discovering the Technology Evolution Pathways for 3D Printing (3DP) Using Bibliometric Investigation and Emerging Applications of 3DP during COVID-19. Clean. Environ. Syst. 2021, 3, 100042. [Google Scholar] [CrossRef]
- Smith, W.G. Diseases of Field and Garden Crops: Chiefly Such as Are Caused by Fungi; Macmillan and Company: New York, NY, USA, 1884. [Google Scholar]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium Ear Blight (Scab) in Small Grain Cereals—A Review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.C.; Liu, Z.D.; Huang, C.; Lu, M.H.; Liu, J.; Yang, Q.P. Statistics and Analysis of Crop Yield Losses Caused by Main Diseases and Insect Pests in Recent 10 Years. Plant Prot. 2016, 42, 1–9. [Google Scholar]
- Ma, H.; Huang, W.; Jing, Y.; Pignatti, S.; Laneve, G.; Dong, Y.; Ye, H.; Liu, L.; Guo, A.; Jiang, J. Identification of Fusarium Head Blight in Winter Wheat Ears Using Continuous Wavelet Analysis. Sensors 2020, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Ban, T.; Kawad, N.; Yanagisawag, A.; Takezaki, A. Progress and Future Prospects of Resistance Breeding to Fusarium Head Blight in Japan. Cereal Res. Commun. 2008, 36, 23–29. [Google Scholar] [CrossRef]
- Xu, X.M.; Nicholson, P.; Thomsett, M.A.; Simpson, D.; Cooke, B.M.; Doohan, F.M.; Brennan, J.; Monaghan, S.; Moretti, A.; Mule, G. Relationship between the Fungal Complex Causing Fusarium Head Blight of Wheat and Environmental Conditions. Phytopathology 2008, 98, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Haile, J.K.; N’Diaye, A.; Walkowiak, S.; Nilsen, K.T.; Clarke, J.M.; Kutcher, H.R.; Steiner, B.; Buerstmayr, H.; Pozniak, C.J. Fusarium Head Blight in Durum Wheat: Recent Status, Breeding Directions, and Future Research Prospects. Phytopathology 2019, 109, 1664–1675. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.M.; Palacios, S.A.; Yerkovich, N.; Palazzini, J.M.; Battilani, P.; Leslie, J.F.; Logrieco, A.F.; Chulze, S.N. Fusarium Head Blight and Mycotoxins in Wheat: Prevention and Control Strategies across the Food Chain. World Mycotoxin J. 2019, 12, 333–355. [Google Scholar] [CrossRef]
- Spanic, V.; Lemmens, M.; Drezner, G. Morphological and Molecular Identification of Fusarium Species Associated with Head Blight on Wheat in East Croatia. Eur. J. Plant Pathol. 2010, 128, 511–516. [Google Scholar] [CrossRef]
- Nielsen, L.K.; Cook, D.J.; Edwards, S.G.; Ray, R.V. The Prevalence and Impact of Fusarium Head Blight Pathogens and Mycotoxins on Malting Barley Quality in UK. Int. J. Food Microbiol. 2014, 179, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Xue, A.G.; Chen, Y.; Seifert, K.; Guo, W.; Blackwell, B.A.; Harris, L.J.; Overy, D.P. Prevalence of Fusarium Species Causing Head Blight of Spring Wheat, Barley and Oat in Ontario during 2001–2017. Can. J. Plant Pathol. 2019, 41, 392–402. [Google Scholar] [CrossRef]
- Dong, F.; Xu, J.; Zhang, X.; Wang, S.; Xing, Y.; Mokoena, M.P.; Olaniran, A.O.; Shi, J. Gramineous Weeds near Paddy Fields Are Alternative Hosts for the Fusarium graminearum Species Complex That Causes Fusarium Head Blight in Rice. Plant Pathol. 2020, 69, 433–441. [Google Scholar] [CrossRef]
- Karasi, M.; Jorge, D.S.; Pierce, A.L. Fusarium Head Blight or Head Scab of Wheat, Barley and Other Small Grain Crops. Agriculture and Natural Resources; Ohio State University, Ohioline: Columbus, OH, USA, 2016. [Google Scholar]
- Stack, R.W. History of Fusarium Head Blight with Emphasis on North America. In Fusarium Head Blight Wheat Barley; APS Press: St. Paul, MN, USA, 2003; pp. 1–34. [Google Scholar]
- Shah, D.A.; De Wolf, E.D.; Paul, P.A.; Madden, L.V. Functional Data Analysis of Weather Variables Linked to Fusarium Head Blight Epidemics in the United States. Phytopathology 2019, 109, 96–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, Genetics and Genomics for Better Control of Disastrous Wheat Fusarium Head Blight. Theor. Appl. Genet. 2020, 133, 1541–1568. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Steiner, U.; Hillnhütter, C.; Dehne, H.W.; Oerke, E.C. Hyperspectral Imaging for Small-Scale Analysis of Symptoms Caused by Different Sugar Beet Diseases. Plant Methods 2012, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Alisaac, E.; Behmann, J.; Kuska, M.T.; Dehne, H.; Mahlein, A. Hyperspectral Quantification of Wheat Resistance to Fusarium Head Blight: Comparison of Two Fusarium Species. Eur. J. Plant Pathol. 2018, 152, 869–884. [Google Scholar] [CrossRef]
- Alisaac, E. Phenotyping of Wheat Resistance to Fusarium Head Blight Using Hyperspectral Imaging; Universität Bonn: Bonn, Germany, 2021. [Google Scholar]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the Intellectual Structure and Evolution of Innovation Systems Research: A Bibliometric Analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Chang, Y.W.; Huang, M.H.; Lin, C.W. Evolution of Research Subjects in Library and Information Science Based on Keyword, Bibliographical Coupling, and Co-Citation Analyses. Scientometrics 2015, 105, 2071–2087. [Google Scholar] [CrossRef]
- Behrend, J.; Eulerich, M. The Evolution of Internal Audit Research: A Bibliometric Analysis of Published Documents (1926–2016). Account. Hist. Rev. 2019, 29, 103–139. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jie, L.; Wang, S.; Qi, H.J.; Li, S.W. Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field. Remote Sens. 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Barbedo, J.G.A.; Tibola, C.S.; Fernandes, J.M.C. Detecting Fusarium Head Blight in Wheat Kernels Using Hyperspectral Imaging. Biosyst. Eng. 2015, 131, 65–76. [Google Scholar] [CrossRef]
- Ropelewska, E.; Zapotoczny, P. Classification of Fusarium-Infected and Healthy Wheat Kernels Based on Features from Hyperspectral Images and Flatbed Scanner Images: A Comparative Analysis. Eur. Food Res. Technol. 2018, 244, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Pan, Y.; Feng, H.; Zhao, X.; Yang, X.; Ding, C.; Yang, G. Development of Fusarium Head Blight Classification Index Using Hyperspectral Microscopy Images of Winter Wheat Spikelets. Biosyst. Eng. 2019, 186, 83–99. [Google Scholar] [CrossRef]
- Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral Measurements of Yellow Rust and Fusarium Head Blight in Cereal Crops: Part 2: On-Line Field Measurement. Biosyst. Eng. 2018, 167, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wu, Z.; Huang, W.; Ma, H.; Zhao, J. Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine. Appl. Sci. 2019, 9, 3894. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K. Present and Future Trends in Plant Disease Detection. Plant Dis. 2016, 100, 1–11. [Google Scholar]
- Whetton, R.L.; Hassall, K.L.; Waine, T.W.; Mouazen, A.M. ScienceDirect Hyperspectral Measurements of Yellow Rust and Fusarium Head Blight in Cereal Crops: Part 1: Laboratory Study. Biosyst. Eng. 2017, 166, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Sensors 2018, 19, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbedo, J.G.A.; Tibola, C.S.; Lima, M.I.P. Deoxynivalenol Screening in Wheat Kernels Using Hyperspectral Imaging. Biosyst. Eng. 2017, 155, 24–32. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Alisaac, E.; Al Masri, A.; Behmann, J.; Dehne, H.W.; Oerke, E.C. Comparison and Combination of Thermal, Fluorescence, and Hyperspectral Imaging for Monitoring Fusarium Head Blight of Wheat on Spikelet Scale. Sensors 2019, 19, 2281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Li, T.; Ding, C.; Zhao, J.; Zhang, D.; Yang, G. Diagnosis of the Severity of Fusarium Head Blight of Wheat Ears on the Basis of Image and Spectral Feature Fusion. Sensors 2020, 20, 2887. [Google Scholar] [CrossRef] [PubMed]
- Delwiche, S.R.; Rodriguez, I.T.; Rausch, S.R.; Graybosch, R.A. Estimating Percentages of Fusarium-Damaged Kernels in Hard Wheat by near-Infrared Hyperspectral Imaging. J. Cereal Sci. 2019, 87, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Huang, W.; Dong, Y.; Liu, L.; Guo, A. Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sens. 2021, 13, 3024. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Ding, W.; Huang, W.; Hu, T.; Zhao, J. Monitoring of Wheat Scab Using the Specific Spectral Index from ASD Hyperspectral Dataset. J. Spectrosc. 2019, 2019, 9153195. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Zhao, J. Identification of Fusarium Head Blight in Wheat Ears Using Vertical Angle-Based Reflectance Spectroscopy. Arab. J. Geosci. 2021, 14, 423. [Google Scholar] [CrossRef]
- Mustafa, G.; Zheng, H.; Khan, I.H.; Tian, L.; Jia, H.; Li, G. Hyperspectral Reflectance Proxies to Diagnose In-Field Fusarium Head Blight in Wheat with Machine Learning. Remote Sens. 2022, 14, 2784. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Kim, M.S. Hyperspectral Imaging for Detection of Scab in Wheat; SPIE: Bellingham, WA, USA, 2000; Volume 4203, pp. 13–20. [Google Scholar]
- Zhang, H.; Paliwal, J.; Jayas, D.S.; White, N. Classification of Fungal Infected Wheat Kernels Using Near-Infrared Reflectance Hyperspectral Imaging and Support Vector Machine. Trans. ASABE 2007, 50, 1779–1785. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Sun, H.; Rao, Z.; Ji, H. Discrimination of Unsound Wheat Kernels Based on Deep Convolutional Generative Adversarial Network and Near-Infrared Hyperspectral Imaging Technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120722. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; He, L.; Xia, Y.; Ren, L.; Liu, C.; Zheng, L. Monitoring the Growth of Fusarium graminearum in Wheat Kernels Using Multispectral Imaging with Chemometric Methods. Anal. Methods 2022, 14, 106–113. [Google Scholar] [CrossRef]
- Shen, G.; Cao, Y.; Yin, X.; Dong, F.; Xu, J.; Shi, J.; Lee, Y.-W. Rapid and Nondestructive Quantification of Deoxynivalenol in Individual Wheat Kernels Using Near-Infrared Hyperspectral Imaging and Chemometrics. Food Control 2022, 131, 108420. [Google Scholar] [CrossRef]
- Yipeng, L.; Wenbing, L.; Kaixuan, H.; Wentao, T.; Ling, Z.; Shizhuang, W.; Linsheng, H. Determination of Wheat Kernels Damaged by Fusarium Head Blight Using Monochromatic Images of Effective Wavelengths from Hyperspectral Imaging Coupled with an Architecture Self-Search Deep Network. Food Control 2022, 135, 108819. [Google Scholar] [CrossRef]
- Singh, C.; Jayas, D.; Paliwal, J.; White, N. Fungal Detection in Wheat Using Near-Infrared Hyperspectral Imaging. Trans. ASABE 2007, 50, 2171–2176. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Kim, M.S.; Dong, Y. Damage and Quality Assessment in Wheat by NIR Hyperspectral Imaging; SPIE: Bellingham, WA, USA, 2010; Voloume 7676, pp. 45–52. [Google Scholar]
- Shahin, M.A.; Symons, S.J. Detection of Fusarium Damaged Kernels in Canada Western Red Spring Wheat Using Visible/near-Infrared Hyperspectral Imaging and Principal Component Analysis. Comput. Electron. Agric. 2011, 75, 107–112. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Kim, M.S.; Dong, Y. Fusarium Damage Assessment in Wheat Kernels by Vis/NIR Hyperspectral Imaging. Sens. Instrum. Food Qual. Saf. 2011, 5, 63–71. [Google Scholar] [CrossRef]
- Singh, C.; Jayas, D.; Paliwal, J.; White, N. Fungal Damage Detection in Wheat Using Short-Wave near-Infrared Hyperspectral and Digital Colour Imaging. Int. J. Food Prop. 2012, 15, 11–24. [Google Scholar] [CrossRef]
- Shahin, M.A.; Symons, S.J. Detection of Fusarium Damage in Canadian Wheat Using Visible/near-Infrared Hyperspectral Imaging. J. Food Meas. Charact. 2012, 6, 3–11. [Google Scholar] [CrossRef]
- Serranti, S.; Cesare, D.; Bonifazi, G. The Development of a Hyperspectral Imaging Method for the Detection of Fusarium-Damaged, Yellow Berry and Vitreous Italian Durum Wheat Kernels. Biosyst. Eng. 2013, 115, 20–30. [Google Scholar] [CrossRef]
- Jaillais, B.; Roumet, P.; Pinson-Gadais, L.; Bertrand, D. Detection of Fusarium Head Blight Contamination in Wheat Kernels by Multivariate Imaging. Food Control 2015, 54, 250–258. [Google Scholar] [CrossRef]
- Senthilkumar, T.; Jayas, D.; White, N.; Fields, P.; Gräfenhan, T. Detection of Fungal Infection and Ochratoxin A Contamination in Stored Wheat Using Near-Infrared Hyperspectral Imaging. J. Stored Prod. Res. 2016, 65, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Saccon, F.A.; Elrewainy, A.; Parcey, D.; Paliwal, J.; Sherif, S.S. Detection of Fusarium on Wheat Using Near Infrared Hyperspectral Imaging; IEEE: Piscataway, NJ, USA, 2016; p. 1. [Google Scholar]
- Vrešak, M.; Halkjaer Olesen, M.; Gislum, R.; Bavec, F.; Ravn Jørgensen, J. The Use of Image-Spectroscopy Technology as a Diagnostic Method for Seed Health Testing and Variety Identification. PLoS ONE 2016, 11, e0152011. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, H. Identification of Wheat Grain in Different States Based on Hyperspectral Imaging Technology. Spectrosc. Lett. 2019, 52, 356–366. [Google Scholar] [CrossRef]
- Alisaac, E.; Behmann, J.; Rathgeb, A.; Karlovsky, P.; Dehne, H.W.; Mahlein, A.K. Assessment of Fusarium Infection and Mycotoxin Contamination of Wheat Kernels and Flour Using Hyperspectral Imaging. Toxins 2019, 11, 556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Chen, G.; Zhang, H.; Jin, N.; Gu, C.; Weng, S.; Wang, Q.; Chen, Y. Integration of Spectroscopy and Image for Identifying Fusarium Damage in Wheat Kernels. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 236, 118344. [Google Scholar] [CrossRef]
- Femenias, A.; Gatius, F.; Ramos, A.J.; Sanchis, V.; Marín, S. Standardisation of near Infrared Hyperspectral Imaging for Quantification and Classification of DON Contaminated Wheat Samples. Food Control 2020, 111, 107074. [Google Scholar] [CrossRef]
- Liang, K.; Huang, J.; He, R.; Wang, Q.; Chai, Y.; Shen, M. Comparison of Vis-NIR and SWIR Hyperspectral Imaging for the Non-Destructive Detection of DON Levels in Fusarium Head Blight Wheat Kernels and Wheat Flour. Infrared Phys. Technol. 2020, 106, 103281. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Lin, F.; Weng, S.; Lei, Y.; Chen, G.; Gu, C.; Zheng, L. New Spectral Classification Index for Rapid Identification of Fusarium Infection in Wheat Kernel. Food Anal. Methods 2020, 13, 2165–2175. [Google Scholar] [CrossRef]
- Weng, S.; Han, K.; Chu, Z.; Zhu, G.; Liu, C.; Zhu, Z.; Zhang, Z.; Zheng, L.; Huang, L. Reflectance Images of Effective Wavelengths from Hyperspectral Imaging for Identification of Fusarium Head Blight-Infected Wheat Kernels Combined with a Residual Attention Convolution Neural Network. Comput. Electron. Agric. 2021, 190, 106483. [Google Scholar] [CrossRef]
- Femenias, A.; Gatius, F.; Ramos, A.J.; Sanchis, V.; Marín, S. Near-Infrared Hyperspectral Imaging for Deoxynivalenol and Ergosterol Estimation in Wheat Samples. Food Chem. 2021, 341, 128206. [Google Scholar] [CrossRef] [PubMed]
- Nadimi, M.; Brown, J.; Morrison, J.; Paliwal, J. Examination of Wheat Kernels for the Presence of Fusarium Damage and Mycotoxins Using Near-Infrared Hyperspectral Imaging. Meas. Food 2021, 4, 100011. [Google Scholar] [CrossRef]
- Femenias, A.; Bainotti, M.B.; Gatius, F.; Ramos, A.J.; Marín, S. Standardization of near Infrared Hyperspectral Imaging for Wheat Single Kernel Sorting According to Deoxynivalenol Level. Food Res. Int. 2021, 139, 109925. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Baek, I.; Kim, M.S. Does Spatial Region of Interest (ROI) Matter in Multispectral and Hyperspectral Imaging of Segmented Wheat Kernels? Biosyst. Eng. 2021, 212, 106–114. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early Detection of Fusarium Infection in Wheat Using Hyper-Spectral Imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Bauriegel, E.; Herppich, W.B. Hyperspectral and Chlorophyll Fluorescence Imaging for Early Detection of Plant Diseases, with Special Reference to Fusarium Spec. Infections on Wheat. Agriculture 2014, 4, 32–57. [Google Scholar] [CrossRef] [Green Version]
- Menesatti, P.; Antonucci, F.; Pallottino, F.; Giorgi, S.; Matere, A.; Nocente, F.; Pasquini, M.; D’Egidio, M.G.; Costa, C. Laboratory vs. in-Field Spectral Proximal Sensing for Early Detection of Fusarium Head Blight Infection in Durum Wheat. Biosyst. Eng. 2013, 114, 289–293. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Herppich, W. Rapid Fusarium Head Blight Detection on Winter Wheat Ears Using Chlorophyll Fluorescence Imaging. J. Appl. Bot. Food Qual. 2010, 83, 196–203. [Google Scholar]
- Qiu, R.; Yang, C.; Moghimi, A.; Zhang, M.; Steffenson, B. Detection of Fusarium Head Blight in Wheat Using a Deep Neural Network and Color Imaging. Remote Sens. 2019, 11, 2658. [Google Scholar] [CrossRef] [Green Version]
- Moghimi, A.; Yang, C.; Anderson, J.A.; Reynolds, S.K. Selecting Informative Spectral Bands Using Machine Learning Techniques to Detect Fusarium Head Blight in Wheat; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Zhang, D.; Wang, D.; Gu, C.; Jin, N.; Zhao, H.; Chen, G.; Liang, H.; Liang, D. Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment. Remote Sens. 2019, 11, 2375. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, Q.; Lin, F.; Yin, X.; Gu, C.; Qiao, H. Development and Evaluation of a New Spectral Disease Index to Detect Wheat Fusarium Head Blight Using Hyperspectral Imaging. Sensors 2020, 20, 2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Zhang, H.; Ruan, C.; Huang, W.; Hu, T.; Zhao, J. Detection of Scab in Wheat Ears Using in Situ Hyperspectral Data and Support Vector Machine Optimized by Genetic Algorithm. Int. J. Agric. Biol. Eng. 2020, 13, 182–188. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Chen, G.; Yin, X.; Hu, R.J.; Gu, C.Y.; Pan, Z.G.; Zhou, X.G.; Chen, Y. Integrating Spectral and Image Data to Detect Fusarium Head Blight of Wheat. Comput. Electron. Agric. 2020, 175, 105588. [Google Scholar] [CrossRef]
- Su, W.H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Evaluation of Mask RCNN for Learning to Detect Fusarium Head Blight in Wheat Images; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2020; p. 1. [Google Scholar]
- Su, W.H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic Evaluation of Wheat Resistance to Fusarium Head Blight Using Dual Mask-Rcnn Deep Learning Frameworks in Computer Vision. Remote Sens. 2021, 13, 26. [Google Scholar] [CrossRef]
- Huang, L.; Wu, K.; Huang, W.; Dong, Y.; Ma, H.; Liu, Y.; Liu, L. Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and Pso-Svm. Agriculture 2021, 11, 998. [Google Scholar] [CrossRef]
- Fernández-Campos, M.; Huang, Y.T.; Jahanshahi, M.R.; Wang, T.; Jin, J.; Telenko, D.E.; Góngora-Canul, C.; Cruz, C. Wheat Spike Blast Image Classification Using Deep Convolutional Neural Networks. Front. Plant Sci. 2021, 12, 1054. [Google Scholar] [CrossRef]
- Gu, C.; Wang, D.; Zhang, H.; Zhang, J.; Zhang, D.; Liang, D. Fusion of Deep Convolution and Shallow Features to Recognize the Severity of Wheat Fusarium Head Blight. Front. Plant Sci. 2021, 11, 2075. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, G.; Zheng, H.; Li, W.; Yin, Y.; Wang, Y.; Zhou, M.; Liu, P.; Bilal, M.; Jia, H.; Li, G. Fusarium Head Blight Monitoring in Wheat Ears Using Machine Learning and Multimodal Data from Asymptomatic to Symptomatic Periods. Front. Plant Sci. 2022, 13, 2341. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Chrpová, J.; Hamouz, P. Fusarium Head Blight Detection from Spectral Measurements in a Field Phenotyping Setting—A Pre-Registered Study. Biosyst. Eng. 2021, 211, 97–113. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Jin, N.; Gu, C.; Chen, Y.; Huang, Y. Evaluation of Efficacy of Fungicides for Control of Wheat Fusarium Head Blight Based on Digital Imaging. IEEE Access 2020, 8, 109876–109890. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Chen, H.; Zhang, C.C. Estimation Model of Winter Wheat Disease Based on Meteorological Factors and Spectral Information. Food Prod. Process. Nutr. 2020, 2, 5. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Y.; Huang, W.; Du, X.; Ren, B.; Huang, L.; Zheng, Q.; Ma, H. A Disease Index for Efficiently Detecting Wheat Fusarium Head Blight Using Sentinel-2 Multispectral Imagery. IEEE Access 2020, 8, 52181–52191. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, Y.; Huang, W.; Liu, L.; Ma, H.; Ye, H.; Wang, K. Dynamic Remote Sensing Prediction for Wheat Fusarium Head Blight by Combining Host and Habitat Conditions. Remote Sens. 2020, 12, 3046. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Y.; Huang, W.; Du, X.; Ma, H. Monitoring Wheat Fusarium Head Blight Using Unmanned Aerial Vehicle Hyperspectral Imagery. Remote Sens. 2020, 12, 3811. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, Y.; Huang, W.; Liu, L.; Ma, H. Wheat Fusarium Head Blight Detection Using UAV-Based Spectral and Texture Features in Optimal Window Size. Remote Sens. 2021, 13, 2437. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, L.; Huang, W.; Dong, Y.; Weng, S.; Zhao, J.; Ma, H.; Liu, L. Detection of Wheat Fusarium Head Blight Using UAV-Based Spectral and Image Feature Fusion. Front. Plant Sci. 2022, 13, 3524. [Google Scholar] [CrossRef]
- Feng, Z.H.; Wang, L.Y.; Yang, Z.Q.; Zhang, Y.Y.; Li, X.; Song, L.; He, L.; Duan, J.Z.; Feng, W. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning. Front. Plant Sci. 2022, 13, 828454. [Google Scholar] [CrossRef]
- Guo, W.; Yang, Y.; Zhao, H.; Song, R.; Dong, P.; Jin, Q.; Baig, M.H.A.; Liu, Z.; Yang, Z. Winter Wheat Take-All Disease Index Estimation Model Based on Hyperspectral Data. Appl. Sci. 2021, 11, 9230. [Google Scholar] [CrossRef]
No. | Searching Code | Results | Quality |
---|---|---|---|
1 | (“Wheat spike”) (Topic) or (“Fusarium head blight”) | 3560 | Very rough, very generic, highly irrelevant |
2 | (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) | 6825 | Improved, yet irrelevant |
3 | (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic) and (“remote sensing”) | 163 | Very generic and highly irrelevant |
4 | (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic) and (“remote sensing”) OR (“hyperspectral imaging”) | 198 | Improved, yet irrelevant |
5 | (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic) and (“remote sensing”) OR (“hyperspectral imaging” OR “Fluorescence”) | 307 | A little improved, yet irrelevant |
6 | (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic) and (“remote sensing”) OR (“hyperspectral imaging” OR “Fluorescence” OR “hyperspectral reflectance”) | 338 | More improved, yet irrelevant |
7 | (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic) and (“remote sensing”) OR (“hyperspectral imaging” OR “Fluorescence” OR “reflectance” OR “hyperspectral reflectance”) (Topic) and (“detection”) OR (“classification”) OR (“monitoring”) OR (“identification”) (Topic) | 238 | Much improved, highly relevant. |
No. | Parameters | Definition |
---|---|---|
1 | Time slicing | Year span from 2005 to 2022; years per slice of 1 year for all |
2 | Term source | Title, author, abstract, keywords, and keywords plus |
3 | Node type | Author, cited author, cited reference, institution, country, cited journal, and keywords |
4 | Selection criteria | Top 15% |
5 | Pruning | Pathfinder and pruning sliced networks |
6 | Links | Default |
7 | Visualization | Show merged network and cluster view-static |
No. | Journals | Records | % of Total |
---|---|---|---|
1 | REMOTE SENSING | 14 | 7.568 |
2 | COMPUTERS AND ELECTRONICS IN AGRICULTURE | 7 | 3.784 |
3 | FRONTIERS IN PLANT SCIENCE | 7 | 3.784 |
4 | BIOSYSTEMS ENGINEERING | 6 | 3.243 |
5 | MOLECULAR BIOLOGY REPORTS | 4 | 2.162 |
6 | PHYTOPATHOLOGY | 4 | 2.162 |
7 | PLANT PATHOLOGY | 4 | 2.162 |
8 | SENSORS | 4 | 2.162 |
9 | BMC GENOMICS | 3 | 1.622 |
10 | CROP PASTURE SCIENCE | 3 | 1.622 |
11 | EUROPEAN JOURNAL OF PLANT PATHOLOGY | 3 | 1.622 |
12 | PLANT BIOTECHNOLOGY JOURNAL | 3 | 1.622 |
13 | PLANT DISEASE | 3 | 1.622 |
14 | PLANT PHYSIOLOGY | 3 | 1.622 |
15 | PLANTA | 3 | 1.622 |
No. | Affiliations | Records | % of Total |
---|---|---|---|
1 | CHINESE ACADEMY OF SCIENCES | 22 | 11.892 |
2 | ANHUI UNIVERSITY | 13 | 7.027 |
3 | UNITED STATES DEPARTMENT OF AGRICULTURE USDA | 12 | 6.486 |
4 | UNIVERSITY OF CHINESE ACADEMY OF SCIENCES CAS | 11 | 5.946 |
5 | CHINESE ACADEMY OF AGRICULTURAL SCIENCES | 8 | 4.324 |
6 | NORTHWEST A F UNIVERSITY CHINA | 8 | 4.324 |
7 | CHINA AGRICULTURAL UNIVERSITY | 7 | 3.784 |
8 | INSTITUTE OF CROP SCIENCES CAAS | 7 | 3.784 |
9 | INSTITUTE OF GENETICS DEVELOPMENTAL BIOLOGY CAS | 7 | 3.784 |
10 | INRAE | 6 | 3.243 |
11 | NANJING AGRICULTURAL UNIVERSITY | 6 | 3.243 |
12 | AGRICULTURE AGRI FOOD CANADA | 5 | 2.703 |
13 | BIOTECHNOLOGY AND BIOLOGICAL SCIENCES RESEARCH COUNCIL BBSRC | 5 | 2.703 |
14 | CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS CONICET | 5 | 2.703 |
15 | TUSCIA UNIVERSITY | 5 | 2.703 |
No. | Countries | Records | % of Total |
---|---|---|---|
1 | CHINA | 73 | 39.459 |
2 | USA | 37 | 20.0 |
3 | GERMANY | 18 | 9.730 |
4 | ITALY | 12 | 6.486 |
5 | CANADA | 11 | 5.946 |
6 | FRANCE | 9 | 4.865 |
7 | ENGLAND | 7 | 3.784 |
8 | SOUTH KOREA | 7 | 3.784 |
9 | BELGIUM | 6 | 3.243 |
10 | ARGENTINA | 5 | 2.703 |
11 | AUSTRALIA | 5 | 2.703 |
12 | JAPAN | 4 | 2.162 |
13 | RUSSIA | 4 | 2.162 |
14 | BRAZIL | 3 | 1.622 |
15 | CZECH REPUBLIC | 3 | 1.622 |
No. | Authors | Records | % of Total |
---|---|---|---|
1 | Huang WJ | 10 | 5.405 |
2 | Ma HQ | 9 | 4.865 |
3 | Dong YY | 8 | 4.324 |
4 | Liu LY | 7 | 3.784 |
5 | Huang LS | 6 | 3.243 |
6 | Cruz CD | 5 | 2.703 |
7 | Chen G | 4 | 2.162 |
8 | Chibbar RN | 4 | 2.162 |
9 | Favaron F | 4 | 2.162 |
10 | Gu CY | 4 | 2.162 |
11 | Hong MJ | 4 | 2.162 |
12 | Li LH | 4 | 2.162 |
13 | Schafer W | 4 | 2.162 |
14 | Sella L | 4 | 2.162 |
15 | Seo YW | 4 | 2.162 |
No. | Funding Agencies | Records | % of Total |
---|---|---|---|
1 | National Natural Science Foundation of China NSFC | 53 | 22.269 |
2 | National Key Research and Development Program of China | 21 | 8.824 |
3 | National Key R D Program of China | 9 | 3.782 |
4 | UK Research Innovation | 9 | 3.782 |
5 | Biotechnology and Biological Sciences Research Council | 7 | 2.941 |
6 | China Postdoctoral Science Foundation | 7 | 2.941 |
7 | National Basic Research Program of China | 7 | 2.941 |
8 | Youth Innovation Promotion Association Cas | 6 | 2.521 |
9 | Beijing Nova Program of Science and Technology | 5 | 2.101 |
10 | Chinese Academy of Sciences | 5 | 2.101 |
11 | Natural Sciences and Engineering Research Council of Canada | 5 | 2.101 |
12 | United States Department of Agriculture | 5 | 2.101 |
13 | Canada Research Chairs | 4 | 1.681 |
14 | Deutscher Akademischer Austausch Dienst Daad | 4 | 1.681 |
15 | French National Research Agency | 4 | 1.681 |
No. | WOS Subject Categories | Records | % of Total |
---|---|---|---|
1 | Plant Sciences | 64 | 34.595 |
2 | Agriculture Multidisciplinary | 29 | 15.676 |
3 | Agronomy | 29 | 15.676 |
4 | Food Science Technology | 19 | 10.27 |
5 | Geosciences Multidisciplinary | 15 | 8.108 |
6 | Remote Sensing | 15 | 8.108 |
7 | Environmental Sciences | 14 | 7.568 |
8 | Imaging Science Photographic Technology | 14 | 7.568 |
9 | Biochemistry Molecular Biology | 12 | 6.486 |
10 | Biotechnology Applied Microbiology | 12 | 6.486 |
11 | Genetics Heredity | 12 | 6.486 |
12 | Horticulture | 10 | 5.405 |
13 | Agricultural Engineering | 9 | 4.865 |
14 | Chemistry Applied | 9 | 4.865 |
15 | Computer Science Interdisciplinary Applications | 7 | 3.784 |
Sr. No. | Count | Year | Cited References |
---|---|---|---|
1 | 12 | 2018 | [29] |
2 | 11 | 2018 | [23] |
3 | 10 | 2015 | [30] |
4 | 8 | 2018 | [31] |
5 | 8 | 2019 | [32] |
6 | 7 | 2020 | [9] |
7 | 7 | 2018 | [33] |
8 | 7 | 2019 | [34] |
9 | 7 | 2016 | [35] |
10 | 7 | 2018 | [36] |
11 | 6 | 2019 | [37] |
12 | 6 | 2017 | [38] |
13 | 6 | 2019 | [39] |
14 | 6 | 2020 | [40] |
15 | 6 | 2019 | [41] |
Sr. No. | Count | Year | Cited Authors |
---|---|---|---|
1 | 21 | 2010 | BAURIEGEL E |
2 | 16 | 2019 | MAHLEIN AK |
3 | 16 | 2017 | BARBEDO JGA |
4 | 14 | 2019 | ZHANG JC |
5 | 13 | 2006 | DELWICHE SR |
6 | 13 | 2019 | ALISAAC E |
7 | 13 | 2019 | JIN X |
8 | 11 | 2019 | GITELSON AA |
9 | 11 | 2019 | WHETTON RL |
10 | 10 | 2020 | HUANG LS |
11 | 9 | 2013 | DAMMER KH |
12 | 9 | 2020 | ZHANG DY |
13 | 9 | 2015 | DELWICHE STEPHEN R |
14 | 9 | 2020 | MA HQ |
15 | 9 | 2009 | GAMON JA |
Ranking | Counts | Year | Keywords |
---|---|---|---|
1 | 20 | 2006 | Fusarium head blight |
2 | 16 | 2009 | Hyperspectral imaging |
3 | 15 | 2009 | Resistance |
4 | 13 | 2009 | Identification |
5 | 11 | 2019 | Yellow rust |
6 | 11 | 2011 | Classification |
7 | 9 | 2006 | Winter wheat |
8 | 8 | 2006 | Infection |
9 | 7 | 2019 | Leaf |
10 | 6 | 2006 | Deoxynivalenol |
11 | 6 | 2009 | Chlorophyll fluorescence |
12 | 6 | 2010 | Scab |
13 | 6 | 2006 | Kernel |
14 | 6 | 2016 | Disease |
15 | 5 | 2019 | Support vector machine |
16 | 4 | 2010 | Reflectance |
17 | 4 | 2019 | Reflectance index |
18 | 4 | 2015 | Damaged kernel |
19 | 4 | 2009 | Index |
20 | 4 | 2020 | Prediction |
Keywords | Strength | Begin | End | 2009–2022 |
---|---|---|---|---|
1 Citrus canker | 1.47 | 2009 | 2013 | ▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
5 Florida | 1.47 | 2009 | 2013 | ▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
1 Biotic stress | 1.07 | 2009 | 2011 | ▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂ |
1 Venturia inaequali | 0.97 | 2009 | 2013 | ▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
1 Scab | 1.31 | 2010 | 2015 | ▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂ |
2 Reflectance | 1.19 | 2010 | 2011 | ▂▂▂▂▃▃▂▂▂▂▂▂▂▂▂▂▂ |
1 Apple scab | 1.17 | 2011 | 2013 | ▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂ |
2 Image classification | 1.13 | 2011 | 2018 | ▂▂▂▂▂▃▃▃▃▃▃▃▃▂▂▂▂ |
2 Multispectral imaging | 1.08 | 2011 | 2015 | ▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂ |
1 Disease detection | 1.06 | 2011 | 2013 | ▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂ |
1 Deoxynivalenol content | 0.98 | 2015 | 2018 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂ |
1 Damaged kernel | 0.9 | 2015 | 2017 | ▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂ |
1 Graminearum | 0.7 | 2015 | 2019 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂ |
1 Infection | 0.75 | 2016 | 2017 | ▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂ |
1 Identification | 0.82 | 2017 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂ |
3 Kernel | 1.49 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
1 Fusarium head blight disease | 0.95 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
1 Fusarium graminearum | 0.74 | 2018 | 2019 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂ |
1 Yellow rust | 1.93 | 2019 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
2 Support vector machine | 1.38 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂ |
3 Spike | 1.21 | 2019 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
4 Feature selection | 1.03 | 2019 | 2020 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂ |
1 Fusarium head blight | 1.41 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
2 Classification | 1.37 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
1 Crop disease | 0.94 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Cluster-ID | Size | Silhouette | Year | LLR * Based Keywords |
---|---|---|---|---|
3 | 27 | 0.827 | 2018 | Remote sensing (9.82, 0.005); hyperspectral (6.5, 0.05); precision agriculture (6.5, 0.05); continuous wavelet analysis (6.5, 0.05); feature selection (3.23, 0.1) |
1 | 31 | 0.849 | 2017 | Random forest (8.3, 0.005); support vector machine (4.74, 0.05); correlation analysis (4.11, 0.05); fusarium damage (4.11, 0.05); fusion of spectral and image (4.11, 0.05) |
8 | 12 | 0.987 | 2017 | Fusarium graminearum (7.02, 0.01); fungicide resistance (7.02, 0.01); benzimidazole fungicides (7.02, 0.01); fusarium asiaticum (7.02, 0.01); loop-mediated isothermal amplification-fluorescent loop primer (7.02, 0.01) |
6 | 17 | 0.909 | 2016 | Color imaging (6.14, 0.05); potato (6.14, 0.05); fluorescence resonance energy transfer (6.14, 0.05); hybprobes (6.14, 0.05); common scab pathogens (6.14, 0.05) |
7 | 15 | 0.833 | 2015 | Multispectral imaging (4.58, 0.05); optical wavelength selection (4.03, 0.05); visualization map (4.03, 0.05); band selection (4.03, 0.05); plant disease (4.03, 0.05) |
4 | 19 | 0.886 | 2014 | Wheat kernel (4.03, 0.05); early detection (4.03, 0.05); toxigenic fungi (4.03, 0.05); near-infrared spectroscopy (4.03, 0.05); food commodities (4.03, 0.05) |
0 | 35 | 0.966 | 2013 | Hyperspectral and fluorescence data (6.39, 0.05); oculimacula spp (6.39, 0.05); ojip (6.39, 0.05); chlorophyll fluorescence (6.39, 0.05); scab detection (6.39, 0.05) |
2 | 30 | 0.826 | 2013 | Diffuse reflectance spectroscopy (3.17, 0.1); hyperspectral image (3.17, 0.1); early disease detection (3.17, 0.1); photosynthesis (3.17, 0.1); flour (3.17, 0.1) |
5 | 18 | 0.931 | 2010 | Disease detection (7.55, 0.01); citrus canker (7.55, 0.01); hyperspectral reflectance imaging (5.54, 0.05); lesion size (5.54, 0.05); spectral similarity (5.54, 0.05) |
Wavelength Range (nm) | Spectrometer (Sensor) | Sensitive Band Selection Approach | Discriminant and Estimation Algorithms | Sensitive Bands (nm) | Location | References |
---|---|---|---|---|---|---|
425–860 | HSI | RA | LDA | 568, 715 | USA | [46] |
900–1700 | HSI | PCA | SVM | Texture features | Canada | [47] |
1000–1600 | NIR-HSI | PCA | LDA, QDA, MD | 1284, 1316, 1347 | Canada | [52] |
1000–1700 | NIR-HSI | LMM | LDA | 1002, 1127, 1199, 1315, 1474 | USA | [53] |
400–1000 | NIR-HSI | PCA | LDA, PCA | 484, 567, 684, 818, 900, 950 | Canada | [54] |
400–1700 | NIR-HSI | RA | LDA | 502, 678, 1198, 1496 | USA | [55] |
400–1700 | HSI | PCA | LDA, QDA, MD | 870 | Canada | [56] |
400–1000 | HSI | PLSR | PLS-DA | 450, 494, 578, 639, 678, 717, 819, 853, 883, 903, 917, 942, 950 | Canada | [57] |
1000–1700 | HSI | PCA, PLS-DA, iPLS-DA | PLS-DA | 1209–1230, 1489–1510, 1601–1622 | Italy | [58] |
360–950 | HSI | PCA | URA | 875, 950 | France | [59] |
528–1785 | HSI | PCA | LDA | 672, 1361, 1411, 1509, 1657 | Brazil | [30] |
1000–1600 | NIR-HSI | PCA | MD, LDA, QDA | 1280, 1300, 1350 | Canada | [60] |
820–1666 | NIR-HSI | GA | ICA | Canada | [61] | |
405–970 | MS | PCA, | Knn | 590–890 | Denmark | [62] |
528–1785 | HSI | PC | 623, 672, 1361, 1411, 1509, 1657 | Brazil | [38] | |
866.4–1701.0 | HSI | PCA | PLS-DA, SVM, Knn | 1105.3, 1199.2, 1305.3, 1321.7, 1439.3, 1458.7, 1478.1 | China | [63] |
400–2500 | HSI | COR | 538–572, 828–1000, 1350–2500 | Germany | [64] | |
400–1000 | HSI | PCA, SPA, RF | SVM, RF, NB | 513, 754, 836, 849, 860, 880 | China | [65] |
900–1700 | HSI | PCA | PLS and LDA | 955, 1278, 1403, 1455, 1528, 1671, 1714 | Spain | [66] |
400–2500 | HSI | GA | SVM, SAE | 570–710, 1050–1089, 1128–1313, 1666–1744, 1005, 1403, 1843, 1879, 1912, 1980 | China | [67] |
350–2500 | HR | SPA | PLS-DA, SVM | 1878, 1887 | China | [68] |
374–1030 | HSI | R-Frog | Knn, CNNs | 940, 678, 728, 798, 1009 | China | [69] |
900–1700 | HSI-NIR | PLS, LDA | PLS, LDA | 1220, 1380 | Spain | [70] |
960–1700 | HSI | Knn | Whole spectra | Canada | [71] | |
900–1700 | HSI-NIR | PCA | LDA, NB, PLSR | 1325, 1396, 1406, 1421 | Canada | [72] |
940–1600 | HSI | PCA, | LDA | 986, 1000, 1111, 1197, 1394, 1200, 1260, 1460 | USA | [73] |
900–1700 | HSI-NIR | PCA | PLS, SVM, local PLS | 970, 1200, 1365, 1430, 1623 | China | [50] |
374–1030 | HSI | Relief F, R-Frog, shuffled frog | KNN, SVM, CNN, LeNet, VGG-16 | 732, 876, 941, 988 | China | [51] |
866–1701 | HSI-NIR | DCGAN | CNN, SVM, DT | 1150–1300, 1400–1650 | China | [48] |
405–970 | MS | PCA, GA | SVM, PLS, BPNN | 910, 910–970 | China | [49] |
Wavelength Range (nm) | Spectrometer | Sensitive Band Selection Approach | Discriminant and Estimation Algorithms | Sensitive Bands (nm) | Location | References |
---|---|---|---|---|---|---|
620 | FluorCam 700 MF | URA | Czech Republic | [77] | ||
400–1000 | HSI | PCA, SAM | 560–560, 665–675 | Germany | [74] | |
400–1000 | HSI | PCA | DCNN, DCRNN, DRNN | 670, 665–675 | China | [29] |
400–2500 | HSI | MDS | SVM | 430–525, 560–710, 1115–2500 | Germany | [23] |
400–1000 | HR | FLDA | SVM, LDA | First order derivatives (490–530, 510–530) | China | [34] |
400–2400 | IRT, CFI, HSI | COR | SVM | 500, 675, 760, 1440, 1880, 2000 | Germany | [39] |
400–1000 | HSI | ISI | SAM | 539, 417, 468 | China | [32] |
RGB | DCNN | KMC, Otsu’s method | China | [78] | ||
400–1000 | HR | URA | 450–488, 500–540 | China | [43] | |
400–900 | HSI | COR, Relief F, RF, SFS-FS, SVM-RFE, LASSO-LR | QDA | 540, 591, 696, 766, 868 | USA | [79] |
RGB | PCNN, KMC | China | [80] | |||
374–1050 | HSI | RF | URA | 560, 565, 570, 661, 663, 678 | China | [81] |
400–1000 | HR | CWT, COR | SVM, GA-SVM | MSR, SIPI, NDVI | China | [82] |
400–1000 | HSI | SPA, COR | PSO-SVM | 442, 491, 552, 675, 685, 693, 698, 706, 757, 767, 924, 935 | China | [40] |
400–2500 | HR | CWA | FLDA | 471, 696, 841, 963, 1069, 2272 | China | [9] |
400–1000 | HSI | PCA, GB, DT | DCNN, RF, PLSR, SVR | 480, 560, 660 | China | [83] |
RGB | Mask-RCNN | IS | China | [84] | ||
RGB | Mask-RCNN | IS | China | [85] | ||
400–1000 | HR | CWT | PSO-SVM, RF, BPNN | 474, 495, 528, 582, 615, 691, 738 | China | [86] |
RGB | DCNN | IS | United States | [87] | ||
RGB | Relief-F | RF | China | [88] | ||
400–1000 | HR | COR | SVM | 561, 562, 563, 581, 582, 585, 590, 597, 598, 599 | China | [44] |
400–1000 | HR and CFI | Boruta | KNN, SVM, RF | Chlorophyll indices | China | [89] |
Wavelength Range (nm) | Sensor | Sensitive Band Selection Approach | Discriminant and/or Estimation Algorithms | Sensitive Bands (nm) | Location | References |
---|---|---|---|---|---|---|
400–700 | MANOVA, PCA | PLSDA | SA | Italy | [76] | |
400–730 | PCA | PLSR | 500–650, 650, 700 | United Kingdom | [36] | |
400–730 | RGB | PLSR | On field | United Kingdom | [33] | |
RGB | KMS | [91] | ||||
MS | URA | NDVI, RVI, DVI | China | [92] | ||
(400–100) | MS, HR | URA, OLS | 665, 783, 842 | China | [93] | |
MODIS | DTM, RVM | China | [94] | |||
450–950 | HSI | backward feature selection, | URA, PLSR, FLDA, LR, RF, SVM, BPNN | 650, 670, 690, 730, 770 | China | [95] |
400–2400 | HR | SVM | Spectral analysis | Czech Republic | [90] | |
450–950 | HSI | Logistic model | 550, 670, 702, 740 | China | [96] | |
400–2400 | HR | CWT | RF, Knn, SVM, NN, Xgboost | 401, 460, 789, 840 | China | [45] |
450–950 | RF | RF, BPNN, SVM | 518, 666, 706, 742, 846 | China | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Mustafa, G.; Haider Khan, I.; Liu, J.; Chen, C.; Hu, B.; Chen, M.; Ali, I.; Liu, Y. Global Trends and Future Directions in Agricultural Remote Sensing for Wheat Scab Detection: Insights from a Bibliometric Analysis. Remote Sens. 2023, 15, 3431. https://doi.org/10.3390/rs15133431
Hussain S, Mustafa G, Haider Khan I, Liu J, Chen C, Hu B, Chen M, Ali I, Liu Y. Global Trends and Future Directions in Agricultural Remote Sensing for Wheat Scab Detection: Insights from a Bibliometric Analysis. Remote Sensing. 2023; 15(13):3431. https://doi.org/10.3390/rs15133431
Chicago/Turabian StyleHussain, Sarfraz, Ghulam Mustafa, Imran Haider Khan, Jiayuan Liu, Cheng Chen, Bingtao Hu, Min Chen, Iftikhar Ali, and Yuhong Liu. 2023. "Global Trends and Future Directions in Agricultural Remote Sensing for Wheat Scab Detection: Insights from a Bibliometric Analysis" Remote Sensing 15, no. 13: 3431. https://doi.org/10.3390/rs15133431
APA StyleHussain, S., Mustafa, G., Haider Khan, I., Liu, J., Chen, C., Hu, B., Chen, M., Ali, I., & Liu, Y. (2023). Global Trends and Future Directions in Agricultural Remote Sensing for Wheat Scab Detection: Insights from a Bibliometric Analysis. Remote Sensing, 15(13), 3431. https://doi.org/10.3390/rs15133431