Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. InVEST Model
2.2.2. Markov-PLUS Model
2.2.3. Scenario Setting
- NTS: Assuming that the demand for land use is not affected by subsequent policies, continue to maintain the existing trend evolution.
- ERS: According to the principles of multiple ecological protection planning in Liaoning Province, ecological restoration and comprehensive management are promoted. It is assumed that under the ecological restoration scenario, the construction goal of increasing forestland coverage by 0.5% every 5 years in the 14th Five-Year Forestry and Grassland Development Plan of Liaoning Province must be achieved. In the Markov model, the probability of forestland conversion to other land uses is reduced by 60%, and the policy of returning farmland to forest and grassland and desertification control is further promoted. The probability of transfer of farmland and unused land outside the permanent basic farmland area (farmland designated by the government that needs protection and cannot be used for other purposes) to forestland and grassland is increased by 20%. Adding forest parks and ecological protection red lines (areas with special and important ecological functions designated by the government) as forestland construction areas, the priority of forestland expansion in this area is higher than that of other land types.
- EPS: It is assumed that the study area will be driven by economic development in the future, and the probability of conversion from other land to construction land will increase by 20%. In order to attract external production factors and promote the economic development of Liaoning Province, national economic development zones and provincial economic development zones are added as economic construction zones; the priority of construction land expansion in this area is higher than that of other land types.
2.2.4. Spatial Autocorrelation Analysis
2.3. Data Sources
2.3.1. The Remote Sensing Dataset of LUCC
2.3.2. Carbon Density Data
2.3.3. Driving Factors Data
3. Results
3.1. Spatial Change in Land Use
3.2. Driving Forces of Land Use Change
3.3. Spatiotemporal Variation Characteristics of Carbon Storage
3.4. LUCC Simulation under Multiple Scenarios
3.5. Carbon Storage Estimation and Spatial Distribution Characteristics Analysis under Multiple Scenarios
3.5.1. Carbon Storage Estimation
3.5.2. Spatial Pattern Prediction of Carbon Storage
3.5.3. Spatiotemporal Distribution Characteristics of Carbon Storage
4. Discussion
4.1. Ecological and Development Problems Caused by Urbanization
4.2. Influence of LUCC Driving Factors on Carbon Storage
4.3. Influence of Policy on Carbon Storage in Cities
4.4. Response Relationship between Land Use and Spatial Distribution of Carbon Storage
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Sean, O.N. COP26: Some Progress, But Nations Still Fiddling While World Warms. Engineering 2022, 11, 6–8. [Google Scholar]
- Chang, X.Q.; Xing, Y.Q.; Wang, J.Q.; Yang, H.; Gong, W.S. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- He, C.Y.; Zhang, D.; Huang, Q.X.; Zhao, Y.Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Houghton, R.A.; Skole, D.L.; Lefkowitz, D.S. Changes in the landscape of Latin America between 1850 and 1985 II. Net release of CO2 to the atmosphere. For. Ecol. Manag. 1991, 38, 173–199. [Google Scholar] [CrossRef]
- Zhuang, Q.W.; Shao, Z.F.; Gong, J.Y.; Li, D.R.; Huang, X.; Zhang, Y.; Xu, X.D.; Dang, C.Y.; Chen, J.L.; Altan, O.; et al. Modeling carbon storage in urban vegetation: Progress, challenges, and opportunities. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103058. [Google Scholar] [CrossRef]
- Mishra, U.; Torn, M.S.; Masanet, E.; Ogle, S.M. Improving regional soil carbon inventories: Combining the IPCC carbon inventory method with regression kriging. Geoderma 2012, 189–190, 288–295. [Google Scholar] [CrossRef]
- Sperow, M. An enhanced method for using the IPCC approach to estimate soil organic carbon storage potential on U.S. agricultural soils. Agric. Ecosyst. Environ. 2014, 193, 96–107. [Google Scholar] [CrossRef]
- He, Y.L.; Ma, J.M.; Zhang, C.S.; Yang, H. Spatio-Temporal Evolution and Prediction of Carbon Storage in Guilin Based on FLUS and InVEST Models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Abudureheman, M.; Halike, A.; Yao, K.X.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.M.; Gao, B.P.; Zheng, K.J.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Lv, X.Y.; Qiao, Y.; Yu, J.Q.; Gong, S.Y.; Hao, L.L. Analysis and Prediction of Forest Carbon Storage and Carbon Sequestration Capacity in China. Acad. J. Environ. Earth Sci. 2022, 4, 25–30. [Google Scholar]
- Tang, L.P.; Ke, X.L.; Zhou, T.; Zheng, W.W.; Wang, L.Y. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.G.; Deng, Y.; Tang, Z.H.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Wu, W.H.; Xu, L.Y.; Zheng, H.Z.; Zhang, X.R. How much carbon storage will the ecological space leave in a rapid urbanization area? Scenario analysis from Beijing-Tianjin-Hebei Urban Agglomeration. Resour. Conserv. Recycl. 2023, 189, 106774. [Google Scholar] [CrossRef]
- Zhu, G.F.; Qiu, D.D.; Zhang, Z.X.; Sang, L.Y.; Liu, Y.W.; Wang, L.; Zhao, K.L.; Ma, H.Y.; Xu, Y.X.; Wan, Q.Z. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Gai, Z.X.; Xu, Y.; Du, G.M. Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition. Sustainability 2023, 15, 3897. [Google Scholar] [CrossRef]
- Dida, J.J.; Tiburan, C.; Tsutsumida, N.; Saizen, I. Carbon Stock Estimation of Selected Watersheds in Laguna, Philippines Using InVEST. Philipp. J. Sci. 2021, 150, 501–513. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Song, R.X.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Nie, X.; Lu, B.; Chen, Z.P.; Yang, Y.W.; Chen, S.; Chen, Z.H.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Li, L.; Song, Y.; Wei, X.H.; Dong, J. Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan, China. Ecol. Indic. 2020, 111, 106064. [Google Scholar] [CrossRef]
- Wang, N.F.; Chen, X.P.; Zhang, Z.L.; Pang, J.X. Spatiotemporal dynamics and driving factors of county-level carbon storage in the Loess Plateau: A case study in Qingcheng County, China. Ecol. Indic. 2022, 144, 109460. [Google Scholar] [CrossRef]
- Liu, X.P.; Wang, S.J.; Wu, P.J.; Feng, K.S.; Klaus, H.; Li, X.; Sun, L.X. Impacts of Urban Expansion on Terrestrial Carbon Storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef]
- Li, K.M.; Cao, J.J.; Adamowski, J.F.; Biswas, A.; Zhou, J.J.; Liu, Y.J.; Zhang, Y.K.; Liu, C.F.; Dong, X.G.; Qin, Y.L. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Zhao, M.M.; He, Z.B.; Du, J.; Chen, L.F.; Lin, P.F.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Zhu, X.J.; Li, J.X.; Cheng, H.; Zheng, L.G.; Huang, W.S.; Yan, Y.; Liu, H.; Yang, X.Y. Assessing the impacts of ecological governance on carbon storage in an urban coal mining subsidence area. Ecol. Inform. 2022, 72, 101901. [Google Scholar] [CrossRef]
- Lahiji, R.N.; Dinan, N.M.; Liaghati, H.; Ghaffarzadeh, H.; Vafaeinejad, A. Scenario-based estimation of catchment carbon storage: Linking multi-objective land allocation with InVEST model in a mixed agriculture-forest landscape. Front. Earth Sci. 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Xiang, S.J.; Wang, Y.; Deng, H.; Yang, C.M.; Wang, Z.F.; Gao, M. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Ai, J.J.; Sun, Q.W.; Li, Z.C.; Hou, L.Y.; Song, L.G.; Tang, G.Y.; Li, L.; Shao, G.D. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena 2021, 196, 104872. [Google Scholar] [CrossRef]
- Duan, X.W.; Rong, L.; Hu, J.M.; Zhang, G.L. Soil organic carbon stocks in the Yunnan Plateau, southwest China: Spatial variations and environmental controls. J. Soils Sediments 2014, 14, 1643–1658. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Soromessa, T.; Elias, E.; Noszczyk, T.; Hernik, J.; Benti, N.E. Expressing carbon storage in economic terms: The case of the upper Omo Gibe Basin in Ethiopia. Sci. Total Environ. 2022, 808, 152166. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, J.; Chen, W.X. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China. Environ. Sci. Pollut. Res. 2022, 29, 45507–45526. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Dai, H.C.; Sun, L.; Xie, Y.; Liu, Z.; Wang, P.; Yabar, H. Exploring the impacts of regional unbalanced carbon tax on CO2 emissions and industrial competitiveness in Liaoning province of China. Energy Policy 2018, 113, 9–19. [Google Scholar] [CrossRef]
- Shen, L.; Zeng, Q. Multiscenario simulation of land use and land cover in the Zhundong mining area, Xinjiang, China. Ecol. Indic. 2022, 145, 109608. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Gong, W.; Duan, X.; Sun, Y.; Zhang, Y.; Ji, P.; Tong, X.; Qiu, Z.; Liu, T. Multi-scenario simulation of land use/cover change and carbon storage assessment in Hainan coastal zone from perspective of free trade port construction. J. Clean. Prod. 2023, 385, 135630. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Mei, H.; Ji, J.J.; Cao, M.K.; Li, K.R. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163. (In Chinese) [Google Scholar]
- Liu, H.Y. Dynamics Change and Quantification of Sequestration Potential for Soil Organic Carbon in Croplands in Liaoning Province. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2011. (In Chinese). [Google Scholar]
- Li, H.Y. The Evaluation on Ecological Effects of the Project of Returning Farmland to Forest in Liaoning Province, based on Remote Sensing and InVEST Model. Ph.D. Thesis, Jilin University, Changchun, China, 2019. (In Chinese). [Google Scholar]
- Xu, L.; He, N.P.; Yu, G.R. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). Sci. Data Bank 2019, 4, 90–96. [Google Scholar]
- Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 2020, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Wang, T.; Lv, G. Spatial distribution of Forest Aboveground Biomass in Northeast China (2020). 2022. [Google Scholar] [CrossRef]
- Ma, W.H.; Fang, J.Y.; Yang, Y.H.; Mohammat, A. Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci. China Life Sci. 2010, 53, 841–850. [Google Scholar] [CrossRef]
- Fan, J.W.; Zhong, H.P.; Harris, W.; Yu, G.R.; Wang, S.Q.; Hu, Z.M.; Yue, Y.Z. Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Clim. Chang. 2008, 86, 375–396. [Google Scholar] [CrossRef]
- Wu, H.B.; Guo, Z.T.; Peng, C.H. Distribution and storage of soil organic carbon in China. Glob. Biogeochem. Cycles 2003, 17, 1–11. [Google Scholar] [CrossRef]
- Ni, J. Forage Yield-Based Carbon Storage in Grasslands of China. Clim. Chang. 2004, 67, 237–246. [Google Scholar] [CrossRef]
- Yang, Y.H.; Fang, J.Y.; Ma, W.H.; Smith, P.; Mohammat, A.; Wang, S.P.; Wang, W. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Glob. Chang. Biol. 2010, 16, 3036–3047. [Google Scholar] [CrossRef]
- LI, J.P.; XIA, S.X.; YU, X.B.; Li, X.S.; Xu, C.; Zhao, N.; Wang, S.T. Evaluation of Carbon Storage on Terrestrial Ecosystem in Hebei Province Based on InVEST Model. J. Ecol. Rural. Environ. 2020, 36, 854–861. (In Chinese) [Google Scholar]
- Liu, C.F.; He, X.Y.; Chen, W.; Zhao, G.L. Analysis of environmental benefits of vegetation in Shenyang built-up areas. Liaoning For. Sci. Technol. 2006, 2, 1–3+31+55. (In Chinese) [Google Scholar]
- Zhu, C.; Zhou, S.Q.; Zhou, D.C. Organic carbon storage in urban built-up areas of China in 1997–2006. Chin. J. Appl. Ecol. 2012, 23, 1195–1202. (In Chinese) [Google Scholar]
- Wang, D.S. Studies on Net Carbon Reserves in Beijing Urban Landscape Green Based on Biomass Measurement. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2010. (In Chinese). [Google Scholar]
- Chen, L.C.; Guan, X.; Li, H.M.; Wang, Q.K.; Zhang, W.D.; Yang, Q.P.; Wang, S.L. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [Google Scholar] [CrossRef]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef]
- Li, Z.Y.; Luan, W.X.; Zhang, Z.C.; Su, M. Relationship between urban construction land expansion and population/economic growth in Liaoning Province, China. Land Use Policy 2020, 99, 105022. [Google Scholar] [CrossRef]
- Kuang, W.H.; Liu, J.Y.; Dong, J.W.; Chi, W.W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Wang, L.Y.; Zhang, S.Y.; Xiong, Q.Q.; Liu, Y.; Liu, Y.F.; Liu, Y.L. Spatiotemporal dynamics of cropland expansion and its driving factors in the Yangtze River Economic Belt: A nuanced analysis at the county scale. Land Use Policy 2022, 119, 106168. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhao, Y.R.; Huang, P.; Zhao, X.; Feng, W.; Li, Q.Q.; Xue, D.X.; Dou, J.; Shi, W.; Wei, W.; et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol. Indic. 2020, 118, 106803. [Google Scholar] [CrossRef]
- Jerath, M.; Bhat, M.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Simard, M.; Twilley, R.R. The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA. Environ. Sci. Policy 2016, 66, 160–169. [Google Scholar] [CrossRef]
- Li, H.Y.; Man, W.D.; Li, X.Y.; Ren, C.Y.; Wang, Z.M.; Li, L.; Jia, M.M.; Mao, D.H. Remote sensing investigation of anthropogenic land cover expansion in the low-elevation coastal zone of Liaoning Province, China. Ocean. Coast. Manag. 2017, 148, 245–259. [Google Scholar] [CrossRef]
- Mao, D.H.; He, X.Y.; Wang, Z.M.; Tian, Y.L.; Xiang, H.X.; Yu, H.; Man, W.D.; Jia, M.M.; Ren, C.Y.; Zheng, H.F. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.Y.; Li, Z.H.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Li, H.Y.; Mao, D.H.; Li, X.Y.; Wang, Z.M.; Jia, M.M.; Huang, X.; Xiao, Y.H.; Xiang, H.X. Understanding the contrasting effects of policy-driven ecosystem conservation projects in northeastern China. Ecol. Indic. 2022, 135, 108578. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; De la Rosa, D.; Zavala, L.M.; Jordán, A.; Anaya-Romero, M. Changes in land cover and vegetation carbon stocks in Andalusia, Southern Spain (1956–2007). Sci. Total Environ. 2011, 409, 2796–2806. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Q.; Zhang, P.; Qiu, X.C.; Qiu, X.C.; Xu, G.L.; Xu, G.L.; Chi, J.Y. Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China. Int. J. Environ. Res. Public Health 2023, 20, 855. [Google Scholar] [CrossRef]
- Lin, T.; Yang, M.Z.; Liu, F.; Yang, H.J.; Wang, Y.J. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model- A case study in Guangdong Province. China Environ. Sci. 2022, 42, 4827–4839. (In Chinese) [Google Scholar]
- Zhu, L.Y.; Xing, H.Q.; Hou, D.Y. Analysis of carbon emissions from land cover change during 2000 to 2020 in Shandong Province, China. Sci. Rep. 2022, 12, 8021. [Google Scholar] [CrossRef]
- Qiu, Z.X.; Feng, Z.K.; Song, Y.N.; Li, M.L.; Zhang, P.P. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Hu, X.P.; Hou, Y.Z.; Li, D.; Hua, T.; Marchi, M.; Paola Forero Urrego, J.; Huang, B.; Zhao, W.W.; Cherubini, F. Changes in multiple ecosystem services and their influencing factors in Nordic countries. Ecol. Indic. 2023, 146, 109847. [Google Scholar] [CrossRef]
- Díaz-Pacheco, J.; van Delden, H.; Hewitt, R. The Importance of Scale in Land Use Models: Experiments in Data Conversion, Data Resampling, Resolution and Neighborhood Extent. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 163–186. [Google Scholar]
- Samat, N. Characterizing the scale sensitivity of the cellular automata simulated urban growth: A case study of the Seberang Perai Region, Penang State, Malaysia. Comput. Environ. Urban Syst. 2006, 30, 905–920. [Google Scholar] [CrossRef]
Land Use Type | Ci_above | Ci_below | Ci_soil | Ci_dead | Ctotal | Data Sources |
---|---|---|---|---|---|---|
Farmland | 21.09 | 9.07 | 72.34 | 0 | 102.50 | [41,42,43,44,45] |
Forestland | 86.12 | 46.08 | 105.62 | 2.15 | 239.97 | [43,44,45,46] |
Grassland | 14.34 | 14.15 | 56.81 | 0.24 | 85.54 | [43,44,45,47,48,49,50,51] |
Water | 6.94 | 6.88 | 42.35 | 0.76 | 56.94 | [43,44,45,52] |
Construction land | 10.51 | 8.24 | 41.78 | 0.58 | 61.11 | [41,43,45,53,54,55] |
Unused land | 9.14 | 11.74 | 21.50 | 0 | 42.38 | [44,45] |
Data Category | Data Name | Data Source | Data Accuracy |
---|---|---|---|
Socioeconomic data | Population | Open Spatial Demographic Data and Research (https://www.worldpop.org/, accessed on 25 August 2022) | 100 m × 100 m |
Gross Domestic Product (GDP) | Global Change Research Data Publishing & Repository (http://www.geodoi.ac.cn, accessed on 31 August 2022) | 1 km × 1 km | |
Accessibility data | Distance to the railway | OpenStreetMap (https://www.openstreetmap.org/, accessed on 24 August 2022) | 90 m × 90 m |
Distance to the highway | |||
Distance to the expressway | |||
Distance to the trunk road | |||
Distance to the secondary trunk road | |||
Distance to the bypass | |||
Distance to the city center | |||
Climate and environmental data | Soil type | National Qinghai-Tibet Plateau Scientific Data Center (http://data.tpdc.ac.cn/, accessed on 18 October 2022) | 1 km × 1 km |
Distance to the river | Open Street Map (https://www.openstreetmap.org/, accessed on 25 August 2022) | 90 m × 90 m | |
Annual average temperature | WorldClim (https://worldclim.org/data/index.html, accessed on 7 September 2022) | 490 m × 490 m | |
Average annual rainfall | |||
Digital elevation model (DEM) | Geospatial Data Cloud (http://www.gscloud.cn, accessed on 22 August 2022) | 30 m × 30 m | |
Slope | |||
Aspect of slope |
Land Use Type | 2000 | 2010 | 2020 | 2000–2010 | 2010–2020 | 2000–2020 |
---|---|---|---|---|---|---|
Farmland | 73,575.60 | 72,171.92 | 71,195.53 | −1403.68 | −976.39 | −2380.07 |
Forestland | 50,445.49 | 50,873.41 | 51,297.33 | 427.92 | 423.92 | 851.84 |
Grassland | 8616.00 | 7293.65 | 6176.00 | −1322.35 | −1117.65 | −2440 |
Water | 2059.21 | 2324.72 | 2053.03 | 265.51 | −271.69 | −6.18 |
Construction land | 11,257.35 | 13,321.05 | 15,265.92 | 2063.70 | 1944.87 | 4008.57 |
Unused land | 59.74 | 28.64 | 25.58 | −31.10 | −3.06 | −34.16 |
2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Farmland | Forestland | Grassland | Water | Construction Land | Unused Land | Total | Total Transfer-Out | ||
2000 | Farmland | 66,679.63 | 1956.16 | 1177.92 | 396.37 | 3362.78 | 2.75 | 73,575.60 | 6895.98 |
Forestland | 2192.03 | 47,943.19 | 79.70 | 3.69 | 226.67 | 0.21 | 50,445.49 | 2502.30 | |
Grassland | 2072.93 | 1391.73 | 4910.91 | 5.67 | 222.89 | 11.88 | 8616.00 | 3705.09 | |
Water | 183.28 | 5.60 | 1.79 | 1407.20 | 458.00 | 3.35 | 2059.21 | 652.01 | |
Construction land | 52.67 | 0.62 | 0.41 | 235.26 | 10,967.73 | 0.66 | 11,257.35 | 289.62 | |
Unused land | 15.00 | 0.04 | 5.28 | 4.83 | 27.86 | 6.73 | 59.74 | 53.01 | |
Total | 71,195.53 | 51,297.33 | 6176.00 | 2053.03 | 15,265.92 | 25.58 | 146,013.39 | —— | |
Total transfer-in | 4515.90 | 3354.15 | 1265.09 | 645.82 | 4298.19 | 18.85 | —— | 14,098.00 |
Land Use Type | 2020 | NTS | ERS | EPS |
---|---|---|---|---|
Farmland | 71,195.53 | 67,560.56 | 63,769.61 | 66,669.37 |
Forestland | 51,297.33 | 51,846.53 | 55,646.63 | 51,741.94 |
Grassland | 6176.00 | 5606.36 | 5637.08 | 5362.86 |
Water | 2053.03 | 2053.03 | 2057.08 | 2053.06 |
Construction land | 15,265.92 | 18,928.78 | 18,883.32 | 20,169.51 |
Unused land | 25.58 | 18.13 | 19.68 | 16.65 |
Carbon Storage Increase | Carbon Storage Reduce | |||
---|---|---|---|---|
Conversion of Major Land Use Types | Variation | Conversion of Major Land Use Types | Variation | |
NTS | Farmland–Forestland | 4.72 | Farmland–Construction land | −13.62 |
Grassland–Forestland | 3.17 | Grassland–Construction land | −0.89 | |
ERS | Farmland–Forestland | 46.25 | Farmland–Construction land | −16.52 |
Grassland–Forestland | 12.12 | Farmland–Grassland | −0.37 | |
EPS | Grassland–Forestland | 6.86 | Farmland–Construction land | −18.73 |
Unused land–Construction land | 0.01 | Grassland–Construction land | −0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. https://doi.org/10.3390/rs15164050
Li P, Chen J, Li Y, Wu W. Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China. Remote Sensing. 2023; 15(16):4050. https://doi.org/10.3390/rs15164050
Chicago/Turabian StyleLi, Pengcheng, Jundian Chen, Yixin Li, and Wen Wu. 2023. "Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China" Remote Sensing 15, no. 16: 4050. https://doi.org/10.3390/rs15164050
APA StyleLi, P., Chen, J., Li, Y., & Wu, W. (2023). Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China. Remote Sensing, 15(16), 4050. https://doi.org/10.3390/rs15164050