DOA Estimation of Multiple Coherent Targets Using Weight Vector Orthogonal Decomposition in TDM-MIMO HF-Radar
Abstract
:1. Introduction
1.1. Development of MIMO HF-Radar
1.2. Development of Multi-Coherent-Targets DOA Estimation
1.3. Origin of the IC-WORD Algorithm
2. Signal Model
3. Theory and Analysis
3.1. Pattern Synthesis via Weight Vector Orthogonal Decomposition (WORD Algorithm)
3.2. Spatial Spectrum Iterative Calculation Method Based on Weight Vector Orthogonal Decomposition (IC-WORD)
3.2.1. The First Iteration
3.2.2. The Second Iteration
3.2.3. Algorithm Termination Condition
Algorithm 1. IC-WORD algorithm |
Input: original signal , sidelobe level the convergence threshold Output: spatial spectrum |
(1) Calculated the weight of the first iteration according to the set sidelobe level |
(2) Calculate by and |
(3) Design the weight of the next iteration according to |
(4) Calculate by and |
(5) Confirm the divergence threshold |
(6) Calculate the next generation of and |
(7) If the difference between generations is less than enter (8); Else if more than , enter (9); Otherwise return to (6); |
(8) Output (9) Output |
4. Simulations and Verification
4.1. 1~4 Iterations of IC-WORD under Multi-Coherent Source Conditions
4.2. Comparison of the Spatial Spectrum Estimation between Smooth-MUSIC and IC-WORD under Multi-Coherent Source Conditions
4.3. Verification of Measured Data
4.4. Algorithm Performance Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzvonkovskaya, A.; Helzel, T.; Petersen, L.; Merz, C.R.; Liu, Y.; Weisberg, R.H. Initial results of ship detection and tracking using WERA HF ocean radar with MIMO configuration. In Proceedings of the 2014 15th International Radar Symposium (IRS), Gdańsk, Poland, 16–18 June 2014; pp. 1–3. [Google Scholar]
- Dzvonkovskaya, A.; Merz, C.R.; Liu, Y.; Weisberg, R.H.; Helzel, T.; Petersen, L. Initial surface current measurements on the West Florida shelf using WERA HF ocean radar with multiple input multiple output (MIMO) synthetic aperture. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–4. [Google Scholar]
- Jangal, F.; Menelle, M. French HFSWR contribution to the European integrated maritime surveillance system I2C. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015; pp. 1–5. [Google Scholar]
- Tan, J.; Wen, B.; Tian, Y.; Tian, M. Use of a time-staggered FMCW signal for portable high-frequency surface wave radar. Remote Sens. Lett. 2016, 7, 1180–1189. [Google Scholar] [CrossRef]
- Viberg, M.; Krim, H. Two decades of statistical array processing. In Proceedings of the Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136), Pacific Grove, CA, USA, 2–5 November 1997; Volume 771, pp. 775–777. [Google Scholar]
- Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef]
- Paulraj, A.; Roy, R.; Kailath, T. A subspace rotation approach to signal parameter estimation. Proc. IEEE 1986, 74, 1044–1046. [Google Scholar] [CrossRef]
- Viberg, M.; Ottersten, B. Sensor array processing based on subspace fitting. IEEE Trans. Signal Process. 1991, 39, 1110–1121. [Google Scholar] [CrossRef]
- Viberg, M.; Ottersten, B.; Kailath, T. Detection and estimation in sensor arrays using weighted subspace fitting. IEEE Trans. Signal Process. 1991, 39, 2436–2449. [Google Scholar] [CrossRef]
- Hung, H.; Kaveh, M. Coherent wide-band ESPRIT method for directions-of-arrival estimation of multiple wide-band sources. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 354–356. [Google Scholar] [CrossRef]
- Jiang, X.; Qian, S. DOA estimation of coherent signals based on modified music algorithm. In Proceedings of the 2021 IEEE 3rd International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Changsha, China, 20–22 October 2021; pp. 918–921. [Google Scholar]
- Rahamim, D.; Tabrikian, J.; Shavit, R. Source localization using vector sensor array in a multipath environment. IEEE Trans. Signal Process. 2004, 52, 3096–3103. [Google Scholar] [CrossRef]
- Iwai, T.; Hirose, N.; Kikuma, N.; Sakakibara, K.; Hirayama, H. DOA estimation by MUSIC algorithm using forward-backward spatial smoothing with overlapped and augmented arrays. In Proceedings of the 2014 International Symposium on Antennas and Propagation Conference Proceedings, Kaohsiung, Taiwan, 2–5 December 2014; pp. 375–376. [Google Scholar]
- Liyang, Z.; Dengshan, H. A new ESPRIT algorithm based on Toeplitz method for coherent signals. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011; pp. 1521–1524. [Google Scholar]
- Li, D.; Dong, C.; Huang, J. A study on the application of Toeplitz approximation method on DOA estimation. In Proceedings of the 2010 2nd International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010; pp. V3-215–V3-218. [Google Scholar]
- Vasylyshyn, V. Selecting the Best DOA Estimates among Estimates Obtained using Toeplitz Matrix Approximation and General Covariance Matrix. In Proceedings of the 2020 17th European Radar Conference (EuRAD), Utrecht, The Netherlands, 10–15 January 2021; pp. 294–297. [Google Scholar]
- Vasylyshyn, V. Threshold Performance Improvement of DOA Estimation using Pseudo-Noise Resampling and Toeplitz Covariance Matrix Approximation. In Proceedings of the 2020 IEEE Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine, 21–25 September 2020; pp. 40–43. [Google Scholar]
- Zhao, Y.; Zhou, Y.; Yang, Y.; Hao, Y. Robust Virtual Array Transformation Beamforming Approach Against Jammer Motion. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium—China (ACES), Nanjing, China, 8–11 August 2019; pp. 1–2. [Google Scholar]
- Stoica, P.; Moses, R.L.; Friedlander, B.; Soderstrom, T. Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 378–392. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood and Cramer-Rao bound: Further results and comparisons. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 23–26 May 1989; Volume 2604, pp. 2605–2608. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 2140–2150. [Google Scholar] [CrossRef]
- Wagner, M.; Gerstoft, P.; Park, Y. Gridless DOA Estimation via. Alternating Projections. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4215–4219. [Google Scholar]
- Lei, H.; Shunjun, W.; Linrang, Z. Low-complexity method of weighted subspace fitting for direction estimation. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2005; pp. 491–496. [Google Scholar]
- Lee, D. MIMO OFDM Channel Estimation via Block Stagewise Orthogonal Matching Pursuit. IEEE Commun. Lett. 2016, 20, 2115–2118. [Google Scholar] [CrossRef]
- Tan, Z.; Nehorai, A. Sparse Direction of Arrival Estimation Using Co-Prime Arrays with Off-Grid Targets. IEEE Signal Process. Lett. 2014, 21, 26–29. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target Detection Within Nonhomogeneous Clutter Via Total Bregman Divergence-Based Matrix Information Geometry Detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Xu, Y. Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter. IEEE Trans. Commun. 2022, 70, 4107–4120. [Google Scholar] [CrossRef]
- Zhang, X.; He, Z.; Liao, B.; Zhang, X.; Peng, W. Pattern Synthesis for Arbitrary Arrays via Weight Vector Orthogonal Decomposition. IEEE Trans. Signal Process. 2018, 66, 1286–1299. [Google Scholar] [CrossRef]
- Zhang, X.; He, Z.; Xia, X.G.; Liao, B.; Zhang, X.; Yang, Y. OPARC: Optimal and Precise Array Response Control Algorithm—Part II: Multi-Points and Applications. IEEE Trans. Signal Process. 2019, 67, 668–683. [Google Scholar] [CrossRef]
Antenna Array | 8 Elements | 12 Elements | 16 Elements |
---|---|---|---|
RA (dB) | [−37, −6.4] | [−41.5, −6.5] | [−46, −8] |
Radar Parameters | |
---|---|
MIMO | T3R4 |
Cycle number | 512 |
Number of samples within a cycle | 128 |
Starting frequency | 10 MHz |
Bandwidth | 300 kHz |
Target Parameters | |
Quantity | 6 |
Distance | Both are 80 km |
Speed | 0 |
Angle | −60°, −20°, −10°, 0°, 30°, 60° |
Signal-to-noise ratio | 10 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, X.; Yang, Q. DOA Estimation of Multiple Coherent Targets Using Weight Vector Orthogonal Decomposition in TDM-MIMO HF-Radar. Remote Sens. 2023, 15, 4073. https://doi.org/10.3390/rs15164073
Liu Y, Zhang X, Yang Q. DOA Estimation of Multiple Coherent Targets Using Weight Vector Orthogonal Decomposition in TDM-MIMO HF-Radar. Remote Sensing. 2023; 15(16):4073. https://doi.org/10.3390/rs15164073
Chicago/Turabian StyleLiu, Yifan, Xin Zhang, and Qiang Yang. 2023. "DOA Estimation of Multiple Coherent Targets Using Weight Vector Orthogonal Decomposition in TDM-MIMO HF-Radar" Remote Sensing 15, no. 16: 4073. https://doi.org/10.3390/rs15164073
APA StyleLiu, Y., Zhang, X., & Yang, Q. (2023). DOA Estimation of Multiple Coherent Targets Using Weight Vector Orthogonal Decomposition in TDM-MIMO HF-Radar. Remote Sensing, 15(16), 4073. https://doi.org/10.3390/rs15164073