Combining the Back Propagation Neural Network and Particle Swarm Optimization Algorithm for Lithological Mapping in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Geochemical and Geophysical Data
2.3. General Methodology
2.3.1. Data Preprocessing
2.3.2. Improved BPNN Model Training
2.3.3. Lithological Mapping Based on Improved BPNN Model
2.3.4. Method Comparison and Assessment
2.4. Improved BPNN
2.4.1. The Overall Flow of Improved BPNN
Determine the Structure of BPNN
Particle Encoding
Initialize Particle Swarm
Iterative Updates
Premature Particle Detection
Determine to Stop the Search
2.4.2. Encoding Based on PSO Algorithm
3. Results
3.1. Lithological Map of Diorite
3.2. Model Evaluation
3.2.1. Model Validation
3.2.2. Comparison with Traditional BPNN
3.2.3. Comparison with WofE
3.3. Extended Application of Regional Lithologic Mapping
4. Discussion
4.1. Optimal Parameters from Sensitivity Analysis
4.2. Comparative Analysis
4.3. Limitations of the Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carosi, R.; Montomoli, C.; Iaccarino, S. 20 years of geological mapping of the metamorphic core across Central and Eastern Himalayas. Earth Sci. Rev. 2018, 177, 124–138. [Google Scholar] [CrossRef]
- Guartán, J.A.; Emery, X. Regionalized Classification of Geochemical Data with Filtering of Measurement Noises for Predictive Lithological Mapping. Nat. Resour. Res. 2020, 30, 1033–1052. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, Z.; Cheng, Q.; Wu, G. Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia, China. J. Geochem. Explor. 2022, 232, 10688. [Google Scholar] [CrossRef]
- Clegg, P.; Bruciatelli, L.; Domingos, F.; Jones, R.R.; De Donatis, M.; Wilson, R.W. Digital geological mapping with tablet PC and PDA: A comparison. Comput. Geosci. 2006, 32, 1682–1698. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Muller, R.D.; Chandra, R. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Almasi, A.; Jafarirad, A.; Afzal, P.; Rahimi, M. Orogenic Gold Prospectivity Mapping Using Geospatial Data Integration, Region of Saqez, Nw of Iran. Bull. Miner. Res. Explor. 2015, 150, 65–76. [Google Scholar] [CrossRef]
- Yuyan, Z.; Jiang, W.; Zhao, Y.; Hao, L.; Wang, D.; Lu, J. Integrating Geochemical and Geophysical Information to Improve Geological Mapping in Northeast China: A Data Transferring Technology for Characterization and Classification. Geochem. Int. 2020, 58, 352–362. [Google Scholar] [CrossRef]
- Kuhn, S.; Cracknell, M.J.; Reading, A.M. Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: A demonstration study from the Eastern Goldfields of Australia. Geophysics 2018, 83, B183–B193. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.; Tang, Y.; Jing, L.; Gao, C. Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sens. 2018, 10, 638. [Google Scholar] [CrossRef]
- Esmaeili, S.; Tangestani, M.H.; Tayebi, M.H. Sub-pixel Mapping of Copper- and Iron-Bearing Metamorphic Rocks Using ASTER Data: A Case Study of Toutak and Surian Complexes, NE Shiraz, Iran. Nat. Resour. Res. 2020, 29, 2933–2948. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Data-Driven Evidential Belief Modeling of Mineral Potential Using Few Prospects and Evidence with Missing Values. Nat. Resour. Res. 2014, 24, 291–304. [Google Scholar] [CrossRef]
- Asante-Okyere, S.; Shen, C.; Ziggah, Y.Y.; Rulegeya, M.M.; Zhu, X. A Novel Hybrid Technique of Integrating Gradient-Boosted Machine and Clustering Algorithms for Lithology Classification. Nat. Resour. Res. 2019, 29, 2257–2273. [Google Scholar] [CrossRef]
- Piippo, S.; Sadeghi, M.; Koivisto, E.; Skytt, P.; Baker, T. Semi-automated geological mapping and target generation from geochemical and magnetic data in Halkidiki region, Greece. Ore Geol. Rev. 2022, 142, 104714. [Google Scholar] [CrossRef]
- Wang, X.; Zuo, R.; Wang, Z. Lithological Mapping Using a Convolutional Neural Network based on Stream Sediment Geochemical Survey Data. Nat. Resour. Res. 2022, 31, 2397–2412. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Li, D. Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China. Earth Sci. Inform. 2018, 11, 553–566. [Google Scholar] [CrossRef]
- Wang, Z.; Zuo, R.; Jing, L. Fusion of Geochemical and Remote-Sensing Data for Lithological Mapping Using Random Forest Metric Learning. Math. Geosci. 2020, 53, 1125–1145. [Google Scholar] [CrossRef]
- Jia, W.; Wang, G. Multiple level prospectivity mapping based on 3D GIS and multiple geoscience dataset analysis: A case study in Luanchuan Pb-Zn district, China. Arab. J. Geosci. 2019, 12, 332. [Google Scholar] [CrossRef]
- Magalhães, L.A.; Souza Filho, C.R. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data. Surv. Geophys. 2011, 33, 211–241. [Google Scholar] [CrossRef]
- Cracknell, M.J.; Reading, A.M. Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef]
- Tan, Q.; Huang, Y.; Hu, J.; Zhou, P.; Hu, J. Application of artificial neural network model based on GIS in geological hazard zoning. Neural Comput. Appl. 2020, 33, 591–602. [Google Scholar] [CrossRef]
- Niu, H. Smart safety early warning model of landslide geological hazard based on BP neural network. Saf. Sci. 2020, 123, 104572. [Google Scholar]
- Xu, J.; Zhao, Y. Stability Analysis of Geotechnical Landslide Based on GA-BP Neural Network Model. Comput. Math. Methods Med. 2022, 2022, 3958985. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, J.; Liu, Y.; Ma, D.; Li, M.; Xiang, B. Comparison of GA-BP and PSO-BP neural network models with initial BP model for rainfall-induced landslides risk assessment in regional scale: A case study in Sichuan, China. Nat. Hazards 2019, 100, 173–204. [Google Scholar] [CrossRef]
- Xi, W.; Li, G.; Moayedi, H.; Nguyen, H. A particle-based optimization of artificial neural network for earthquake-induced landslide assessment in Ludian county, China. Geomat. Nat. Hazards Risk 2019, 10, 1750–1771. [Google Scholar] [CrossRef]
- Tien Bui, D.; Himan, S.; Ataollah, S.; Kamran, C.; Nhat-Duc, H.; Binh Thai, P.; Quang-Thanh, B.; Chuyen-Trung, T.; Mahdi, P.; Baharin Bin, A.; et al. A novel integrated approach of relevance vector machine optimized by imperialist competitive algorithm for spatial modeling of shallow landslides. Remote Sens. 2018, 10, 1538. [Google Scholar] [CrossRef]
- Yang, W.; Xia, K.; Fan, S.; Wang, L.; Li, T.; Zhang, J.; Feng, Y. A multi-strategy whale optimization algorithm and its application. Eng. Appl. Artif. Intell. 2022, 108, 104558. [Google Scholar] [CrossRef]
- Hakim, W.L.; Rezaie, F.; Nur, A.S.; Panahi, M.; Khosravi, K.; Lee, C.W.; Lee, S. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. J. Environ. Manag. 2022, 305, 114367. [Google Scholar] [CrossRef]
- Mu, S.; Yang, H.; Li, J.; Chen, Y.; Gang, C.; Zhou, W.; Ju, W. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. J. Geogr. Sci. 2013, 23, 231–246. [Google Scholar] [CrossRef]
- Grunsky, E.C.; Mueller, U.A.; Corrigan, D. A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: Applications for predictive geological mapping. J. Geochem. Explor. 2014, 141, 15–41. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, K.; Hou, W.; Erten, O. Identifying geochemical anomaly through spatially anisotropic singularity mapping: A case study from silver-gold deposit in Pangxidong district, SE China. J. Geochem. Explor. 2020, 210, 106453. [Google Scholar] [CrossRef]
- Kirkwood, C.; Everett, P.; Ferreira, A.; Lister, B. Stream sediment geochemistry as a tool for enhancing geological understanding: An overview of new data from south west England. J. Geochem. Explor. 2016, 163, 28–40. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, F.; Wang, W.; Yang, Z.; Wang, S.; Hu, X.; Guo, S.; He, P. 1:50,000 Geological Map Database of Beiliutumiao Mapsheet, Inner Mongolia. Geol. China 2020, 47, 63–76. [Google Scholar]
- Xiao, W.; Windley, B.F.; Hao, J.; Zhai, M. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069–1090. [Google Scholar] [CrossRef]
- Mahmood Ajaj, Q.; Aidi Shareef, M.; Davut Hassan, N.; Falih Hasan, S.; Noori, A.M. GIS Based Spatial Modeling to Mapping and Estimation Relative Risk of Different Diseases Using Inverse Distance Weighting (IDW) Interpolation Algorithm and Evidential Belief Function (EBF) (Case study: Minor Part of Kirkuk City, Iraq). Int. J. Eng. Technol. 2018, 7, 185–191. [Google Scholar] [CrossRef]
- Fan, D.; Gong, C.; Cao, Y.; Ren, B.; Cheng, M.; Borji, A. Enhanced-alignment measure for binary foreground map evaluation. arXiv 2018, arXiv:1805.10421. [Google Scholar]
- Fan, D.; Cheng, M.; Liu, Y.; Li, T.; Borji, A. Structure-measure: A new way to evaluate foreground maps. arXiv 2017, arXiv:1708.00786. [Google Scholar]
- Ran, M.; Lihi, Z.; Ayellet, T. How to evaluate foreground maps. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2014. [Google Scholar]
- Mohammadi, S.; Noori, M.; Bahri, A.; Majelan, S.G.; Havaei, M. Cagnet: Content-aware guidance for salient object detection. Pattern Recognit. 2020, 103, 107303. [Google Scholar] [CrossRef]
- Noori, M.; Mohammadi, S.; Majelan, S.G.; Bahri, A.; Havaei, M. Dfnet: Discriminative feature extraction and integration network for salient object detection. Eng. Appl. Artif. Intell. 2020, 89, 103419. [Google Scholar] [CrossRef]
- Ofori-Ntow Jnr, E.; Ziggah, Y.Y.; Relvas, S. Hybrid ensemble intelligent model based on wavelet transform, swarm intelligence and artificial neural network for electricity demand forecasting. Sustain. Cities Soc. 2021, 66, 102679. [Google Scholar] [CrossRef]
- Yasin, Q.; Sohail, G.M.; Ding, Y.; Ismail, A.; Du, Q. Estimation of Petrophysical Parameters from Seismic Inversion by Combining Particle Swarm Optimization and Multilayer Linear Calculator. Nat. Resour. Res. 2020, 29, 3291–3317. [Google Scholar] [CrossRef]
- Xie, S.; Huang, N.; Deng, J.; Wu, S.; Zhan, M.; Carranza, E.J.M.; Zhang, Y.; Meng, F. Quantitative prediction of prospectivity for Pb–Zn deposits in Guangxi (China) by back-propagation neural network and fuzzy weights-of-evidence modelling. Geochem. Explor. Environ. Anal. 2022, 2, 22. [Google Scholar] [CrossRef]
- Wang, J.; Xu, D. Artificial Neural Network-Based Microwave Satellite Soil Moisture Reconstruction over the Qinghai–Tibet Plateau, China. Remote Sens. 2021, 13, 5156. [Google Scholar] [CrossRef]
- Tian, J.; Teng, X.; Liu, Y.; Teng, F.; Guo, S.; He, P.; Wang, W. The chronology, geochemistry of the Early Permian granodiorite in Langshan area, Inner Mongolia and its tectonic setting. Geol. China 2020, 47, 767–781. [Google Scholar]
- Dong, H.; Meng, Q.; Liu, G.; Duan, X.; Ti, Z.; Zhu, W.; Xue, P.; Cheng, H.; Ji, T. Geochemical Characteristics of Early Silurian Granite from Biaoshan Area in Beishan, Inner Mongolia and Their Tectonic Implications. Northwest Geol. 2018, 51, 159–174. [Google Scholar]
Cut-Off Value (%) | Number of Diorite Presences | Number of Diorite Absences | Presence of Predictive Accuracy (%) | Absence of Predictive Accuracy (%) |
---|---|---|---|---|
49 | 144 | 15 | 97.30 | 35.71 |
50 | 143 | 16 | 96.62 | 38.10 |
51 | 141 | 18 | 95.27 | 42.86 |
52 | 141 | 19 | 95.27 | 45.24 |
53 | 139 | 21 | 93.92 | 50.00 |
54 | 137 | 21 | 92.57 | 50.00 |
55 | 132 | 23 | 89.19 | 54.76 |
56 | 128 | 23 | 86.49 | 54.76 |
57 | 122 | 26 | 82.43 | 61.90 |
58 | 122 | 27 | 82.43 | 64.29 |
59 | 120 | 28 | 81.08 | 66.67 |
60 | 117 | 28 | 79.05 | 66.67 |
61 | 110 | 29 | 74.32 | 69.05 |
62 | 98 | 30 | 66.22 | 71.43 |
63 | 84 | 32 | 56.76 | 76.19 |
64 | 79 | 33 | 53.38 | 78.57 |
65 | 73 | 34 | 49.32 | 80.95 |
66 | 67 | 35 | 45.27 | 83.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Ma, Z.; Xu, F.; Su, X.; Chen, F. Combining the Back Propagation Neural Network and Particle Swarm Optimization Algorithm for Lithological Mapping in North China. Remote Sens. 2023, 15, 4134. https://doi.org/10.3390/rs15174134
Dong Y, Ma Z, Xu F, Su X, Chen F. Combining the Back Propagation Neural Network and Particle Swarm Optimization Algorithm for Lithological Mapping in North China. Remote Sensing. 2023; 15(17):4134. https://doi.org/10.3390/rs15174134
Chicago/Turabian StyleDong, Yanqi, Zhibin Ma, Fu Xu, Xiaohui Su, and Feixiang Chen. 2023. "Combining the Back Propagation Neural Network and Particle Swarm Optimization Algorithm for Lithological Mapping in North China" Remote Sensing 15, no. 17: 4134. https://doi.org/10.3390/rs15174134
APA StyleDong, Y., Ma, Z., Xu, F., Su, X., & Chen, F. (2023). Combining the Back Propagation Neural Network and Particle Swarm Optimization Algorithm for Lithological Mapping in North China. Remote Sensing, 15(17), 4134. https://doi.org/10.3390/rs15174134