Study on Road Network Vulnerability Considering the Risk of Landslide Geological Disasters in China’s Tibet
Abstract
:1. Introduction
2. Materials
2.1. Overview of the Study Area
2.2. Data Sources and Preprocessing
2.2.1. Data Collection
2.2.2. Data Preprocessing
3. Methods
3.1. Multicriteria Heuristic Analytical Hierarchy Process Model
3.2. Fuzzy Comprehensive Evaluation Model
3.3. Frequency Ratio-Interactive Fuzzy Overlay Analysis
4. Results
4.1. Frequency Ratio-Interactive Fuzzy Overlay Analysis
4.2. Test of Evaluation Results
4.3. Analysis of Road Network Vulnerability
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiang, Y.; Xu, J. Empirical Assessment of Road Network Resilience in Natural Hazards Using Crowdsourced Traffic Data. Int. J. Geogr. Inf. Sci. 2020, 34, 2434–2450. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Li, Z.; Zhang, G.; Ma, D.T. Assessing Potential Likelihood and Impacts of Landslides on Transportation Network Vulnerability. Transp. Res. Part D Transp. Environ. 2020, 82, 102304. [Google Scholar] [CrossRef]
- Ha, H.; Bui, Q.D.; Khuc, T.D.; Tran, D.T.; Pham, B.T.; Mai, S.H.; Nguyen, L.P.; Luu, C. A Machine Learning Approach in Spatial Predicting of Landslides and Flash Flood Susceptible Zones for a Road Network. Model. Earth Syst. Environ. 2022, 8, 4341–4357. [Google Scholar] [CrossRef]
- Amlan, H.A.; Hassan, S.A.; Alias, N.E. Discovering the Global Landscape of Vulnerability Assessment Method of Transportation Network Studies: A Bibliometric Review. Phys. Chem. Earth 2023, 129, 103336. [Google Scholar] [CrossRef]
- Fan, H.; Lu, Y.; Hu, Y.; Fang, J.; Lv, C.; Xu, C.; Feng, X.; Liu, Y. A Landslide Susceptibility Evaluation of Highway Disasters Based on the Frequency Ratio Coupling Model. Sustainability 2022, 14, 7740. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T. Landslides in Sado Island of Japan: Part II. GIS-Based Susceptibility Mapping with Comparisons of Results from Two Methods and Verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Tang, R.X.; Kulatilake, P.H.S.W.; Yan, E.C.; Cai, J. Sen. Evaluating Landslide Susceptibility Based on Cluster Analysis, Probabilistic Methods, and Artificial Neural Networks. Bull. Eng. Geol. Environ. 2020, 79, 2235–2254. [Google Scholar] [CrossRef]
- Maghsoudi Moud, F.; Abbaszadeh Shahri, A.; van Ruitenbeek, F.; Hewson, R.; van der Meijde, M. Evaluation of the Modified AHP-VIKOR for Mapping and Ranking Copper Mineralized Areas, A Case Study from the Kerman Metallogenic Belt, SE Iran. Arab. J. Geosci. 2022, 15, 1756. [Google Scholar] [CrossRef]
- El-Maissi, A.M.; Argyroudis, S.A.; Kassem, M.M.; Leong, L.V.; Mohamed Nazri, F. An Integrated Framework for the Quantification of Road Network Seismic Vulnerability and Accessibility to Critical Services. Sustainability 2022, 14, 12474. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in A Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of Landslide Susceptibility Mapping Using Optimized PSO-ANN Technique. Eng. Comput. 2019, 35, 967–984. [Google Scholar] [CrossRef]
- Xie, W.; Nie, W.; Saffari, P.; Robledo, L.F.; Descote, P.Y.; Jian, W. Landslide Hazard Assessment Based on Bayesian Optimization–Support Vector Machine in Nanping City, China. Nat. Hazards 2021, 109, 931–948. [Google Scholar] [CrossRef]
- Huang, S.; Dou, H.; Jian, W.; Guo, C.; Sun, Y. Spatial Prediction of the Geological Hazard Vulnerability of Mountain Road Network Using Machine Learning Algorithms. Geomat. Nat. Hazards Risk 2023, 14, 2170832. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wu, X. Analysis and Research on the Influencing Factor of the Road Transportation Network Vulnerability Based on the Interpretative Structural Model. In Proceedings of the 2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS), Leicester, UK, 18–20 August 2015; pp. 296–300. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, Y. An Integrative Vulnerability Evaluation Model to Urban Road Complex Network. Wirel. Pers. Commun. 2019, 107, 193–204. [Google Scholar] [CrossRef]
- Cignetti, M.; Godone, D.; Bertolo, D.; Paganone, M.; Thuegaz, P.; Giordan, D. Rockfall Susceptibility along the Regional Road Network of Aosta Valley Region (Northwestern Italy). J. Maps 2021, 17, 54–64. [Google Scholar] [CrossRef]
- Wang, Z.; Chan, A.P.C.; Yuan, J.; Xia, B.; Skitmore, M.; Li, Q. Recent Advances in Modeling the Vulnerability of Transportation Networks. J. Infrastruct. Syst. 2015, 21, 1–9. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-Based Predictive Models for Regional-Scale Landslide Susceptibility Assessment and Risk Mapping along Road Corridors. Geomat. Nat. Hazards Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef]
- Hassan, S.A.; Amlan, H.A.; Alias, N.E.; Ab-Kadir, M.A.; Sukor, N.S.A. Vulnerability of Road Transportation Networks under Natural Hazards: A Bibliometric Analysis and Review. Int. J. Disaster Risk Reduct. 2022, 83, 103393. [Google Scholar] [CrossRef]
- Alsabhan, A.H.; Singh, K.; Sharma, A.; Alam, S.; Pandey, D.D.; Rahman, S.A.S.; Khursheed, A.; Munshi, F.M. Landslide Susceptibility Assessment in the Himalayan Range Based along Kasauli–Parwanoo Road Corridor Using Weight of Evidence, Information Value, and Frequency Ratio. J. King Saud Univ.-Sci. 2022, 34, 101759. [Google Scholar] [CrossRef]
- El-Maissi, A.M.; Argyroudis, S.A.; Kassem, M.M.; Mohamed Nazri, F. Integrated Seismic Vulnerability Assessment of Road Network in Complex Built Environment toward More Resilient Cities. Sustain. Cities Soc. 2023, 89, 104363. [Google Scholar] [CrossRef]
- Ouyang, M.; Hong, L.; Mao, Z.J.; Yu, M.H.; Qi, F. A Methodological Approach to Analyze Vulnerability of Interdependent Infrastructures. Simul. Model. Pract. Theory 2009, 17, 817–828. [Google Scholar] [CrossRef]
- Redzuan, A.A.H.; Zakaria, R.; Anuar, A.N.; Aminudin, E.; Yusof, N.M. Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments. Sustainability 2022, 14, 2244. [Google Scholar] [CrossRef]
- Wang, S.; Hong, L.; Ouyang, M.; Zhang, J.; Chen, X. Vulnerability Analysis of Interdependent Infrastructure Systems under Edge Attack Strategies. Saf. Sci. 2013, 51, 328–337. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S.; Dulebenets, M.A. The Impact of Self-Evacuation from Flood Hazard Areas on the Equilibrium of the Road Transport. Saf. Sci. 2023, 157, 105934. [Google Scholar] [CrossRef]
- Aslan, E.; Çelik, M. Pre-Positioning of Relief Items under Road/Facility Vulnerability with Concurrent Restoration and Relief Transportation. IISE Trans. 2019, 51, 847–868. [Google Scholar] [CrossRef]
- Guerriero, L.; Napoli, M.D.; Novellino, A.; Martire, D.D.; Rispoli, C.; Lee, K.; Bee, E.; Harrison, A.; Calcaterra, D. Multi-Hazard Susceptibility Assessment Using Analytic Hierarchy Process: The Derwent Valley Mills UNESCO World Heritage Site Case Study (United Kingdom). J. Cult. Herit. 2022, 55, 339–345. [Google Scholar] [CrossRef]
- Chen, A.; Yang, C.; Kongsomsaksakul, S.; Lee, M. Network-Based Acessibility Measures for Vulnerability Analysis of Degradable Transportation Networks. Netw. Spat. Econ. 2007, 7, 241–256. [Google Scholar] [CrossRef]
- Berdica, K. An Introduction to Road Vulnerability: What Has Been Done, Is Done and Should Be Done. Transp. Policy 2002, 9, 117–127. [Google Scholar] [CrossRef]
- Taylor, M.A.P.; Sekhar, S.V.C.; D’Este, G.M. Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks. Netw. Spat. Econ. 2006, 6, 267–291. [Google Scholar] [CrossRef]
- Sohn, J. Evaluating the Significance of Highway Network Links under the Flood Damage: An Accessibility Approach. Transp. Res. Part A Policy Pract. 2006, 40, 491–506. [Google Scholar] [CrossRef]
- Erath, A.; Birdsall, J.; Axhausen, K.W.; Hajdin, R. Vulnerability Assessment Methodology for Swiss Road Network. Transp. Res. Rec. 2009, 2137, 118–126. [Google Scholar] [CrossRef]
- Du, Z.P.; Nicholson, A. Degradable Transportation Systems: Sensitivity and Reliability Analysis. Transp. Res. Part B Methodol. 1997, 31, 225–237. [Google Scholar] [CrossRef]
- Cheung, K.F.; Bell, M.G.H. Attacker–Defender Model against Quantal Response Adversaries for Cyber Security in Logistics Management: An Introductory Study. Eur. J. Oper. Res. 2021, 291, 471–481. [Google Scholar] [CrossRef]
- Murray, A.T.; Matisziw, T.C.; Grubesic, T.H. A Methodological Overview of Network Vulnerability Analysis. Growth Chang. 2008, 39, 573–592. [Google Scholar] [CrossRef]
- Wu, Q.; Han, Z.; Cui, C.; Liu, F.; Zhao, Y.; Xie, Z. Vulnerability Identification and Cascading Failure Spatiotemporal Patterns on Road Network under the Rainstorm Disaster. ISPRS Int. J. Geo-Inf. 2022, 11, 564. [Google Scholar] [CrossRef]
- Zhang, H.; Ouyang, M.; Sun, W.; Hong, L. An Approach for Accessibility Assessment and Vulnerability Analysis of National Multimodal Transport Systems. Risk Anal. 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Drejza, S.; Bernatchez, P.; Marie, G.; Friesinger, S. Quantifying Road Vulnerability to Coastal Hazards: Development of a Synthetic Index. Ocean Coast. Manag. 2019, 181, 104894. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Shao, Z.; Aslam, R.W.; Ahmad, I.; Liao, M.; Li, X.; Song, Y. Landslide Hazard, Susceptibility and Risk Assessment (HSRA) Based on Remote Sensing and GIS Data Models: A Case Study of Muzaffarabad Pakistan. Stoch. Environ. Res. Risk Assess. 2022, 36, 4041–4056. [Google Scholar] [CrossRef]
- Rupi, F.; Bernardi, S.; Rossi, G.; Danesi, A. The Evaluation of Road Network Vulnerability in Mountainous Areas: A Case Study. Netw. Spat. Econ. 2015, 15, 397–411. [Google Scholar] [CrossRef]
- Kasmalkar, I.G.; Serafin, K.A.; Miao, Y.; Bick, I.A.; Ortolano, L.; Ouyang, D.; Suckale, J. When Floods Hit the Road: Resilience to Flood-Related Traffic Disruption in the San Francisco Bay Area and Beyond. Sci. Adv. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The Second Chinese Glacier Inventory: Data, Methods and Results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, R.K.; AlAwadh, M.A.; Islam, S.; Khan, R.A.; Qureshi, M.N. GIS-Based Landslide Susceptibility Evaluation Using Fuzzy-AHP Multi-Criteria Decision-Making Techniques in the Abha Watershed, Saudi Arabia. Environ. Earth Sci. 2018, 77, 276. [Google Scholar] [CrossRef]
- Shahri, A.A.; Spross, J.; Johansson, F.; Larsson, S. Landslide Susceptibility Hazard Map in Southwest Sweden Using Artificial Neural Network. Catena 2019, 183, 104225. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Beydoun, G.; Alamri, A.; Shanableh, A. Spatial Earthquake Vulnerability Assessment by Using Multi-Criteria Decision Making and Probabilistic Neural Network Techniques in Odisha, India. Geocarto Int. 2021, 37, 8080–8099. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, G. Application of Fuzzy Comprehensive Evaluation to Evaluate the Effect of Water Flooding Development. J. Pet. Explor. Prod. Technol. 2018, 8, 1455–1463. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, A.; Huang, D.; Huang, Z.; Zhang, B.; Xu, X. Total Probabilistic Measure for the Potential Risk of Regional Roads Exposed to Landslides. Reliab. Eng. Syst. Saf. 2022, 228, 108822. [Google Scholar] [CrossRef]
- Lv, L.; Chen, T.; Dou, J.; Plaza, A. A Hybrid Ensemble-Based Deep-Learning Framework for Landslide Susceptibility Mapping. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102713. [Google Scholar] [CrossRef]
- Saravanan, S.; Istijono, B.; Jennifer, J.J.; Abijith, D.; Sivaranjani, S. Landslide Susceptibility Assessment Using Frequency Ratio Technique—A Case Study of NH67 Road Corridor in the Nilgiris District, Tamilnadu, India. IOP Conf. Ser. Earth Environ. Sci. 2021, 708, 012017. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. A Comparative Study of Heterogeneous Ensemble-Learning Techniques for Landslide Susceptibility Mapping. Int. J. Geogr. Inf. Sci. 2021, 35, 321–347. [Google Scholar] [CrossRef]
- He, Y.; Xiong, J.; Cheng, W.; Yang, J.; He, W.; Yong, Z.; Duan, Y.; Liu, J.; Yang, G.; Wang, N. Assessing the Risk Posed by Flash Floods to the Transportation Network in Southwestern China. Geocarto Int. 2022, 37, 13210–13228. [Google Scholar] [CrossRef]
- Lin, J.; Lin, W. Transportation System Vulnerability Assessment Considering Environmental Impact. J. Adv. Transp. 2022, 2022, 8711894. [Google Scholar] [CrossRef]
- Liu, M.; Agarwal, J.; Blockley, D. Vulnerability of Road Networks. Civ. Eng. Environ. Syst. 2016, 33, 147–175. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Agapiou, A.; Tzouvaras, M.; Themistocleous, K.; Neocleous, K.; Michaelides, S.; Hadjimitsis, D.G. Integrated Use of GIS and Remote Sensing for Monitoring Landslides in Transportation Pavements: The Case Study of Paphos Area in Cyprus. Nat. Hazards 2014, 72, 119–141. [Google Scholar] [CrossRef]
- Bianchini, S.; Solari, L.; Casagli, N. A GIS-Based Procedure for Landslide Intensity Evaluation and Specific Risk Analysis Supported by Persistent Scatterers Interferometry (PSI). Remote Sens. 2017, 9, 1093. [Google Scholar] [CrossRef]
- Leonardi, G.; Palamara, R.; Suraci, F. A Fuzzy Methodology to Evaluate the Landslide Risk in Road Lifelines. Transp. Res. Procedia 2020, 45, 732–739. [Google Scholar] [CrossRef]
- Yin, Y.; Sheng, Y.; He, Y.; Qin, J. Modeling Vague Spatiotemporal Objects Based on Interval Type-2 Fuzzy Sets. Int. J. Geogr. Inf. Sci. 2022, 36, 1258–1273. [Google Scholar] [CrossRef]
- Crawford, M.M.; Dortch, J.M.; Koch, H.J.; Zhu, Y.; Haneberg, W.C.; Wang, Z.; Bryson, L.S. Landslide Risk Assessment in Eastern Kentucky, USA: Developing a Regional Scale, Limited Resource Approach. Remote Sens. 2022, 14, 6246. [Google Scholar] [CrossRef]
- Donnini, M.; Esposito, G.; Pisano, L.; Petrucci, O.; Lollino, P.; Reichenbach, P. National and Regional-Scale Landslide Indicators and Indexes: Applications in Italy. Open Geosci. 2022, 14, 763–775. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, Q.; Ding, Y.; Hu, H.; Chen, L.; Xie, X.; Chen, M.; Yao, Y. Graph Neural Networks with Constraints of Environmental Consistency for Landslide Susceptibility Evaluation. Int. J. Geogr. Inf. Sci. 2022, 36, 2270–2295. [Google Scholar] [CrossRef]
- Cengiz, L.D.; Ercanoglu, M. A Novel Data-Driven Approach to Pairwise Comparisons in AHP Using Fuzzy Relations and Matrices for Landslide Susceptibility Assessments. Environ. Earth Sci. 2022, 81, 1–23. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef]
- Umar, Z.; Pradhan, B.; Ahmad, A.; Jebur, M.N.; Tehrany, M.S. Earthquake Induced Landslide Susceptibility Mapping Using an Integrated Ensemble Frequency Ratio and Logistic Regression Models in West Sumatera Province, Indonesia. Catena 2014, 118, 124–135. [Google Scholar] [CrossRef]
- Kim, J.C.; Lee, S.; Jung, H.S.; Lee, S. Landslide Susceptibility Mapping Using Random Forest and Boosted Tree Models in Pyeong-Chang, Korea. Geocarto Int. 2018, 33, 1000–1015. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Buchroithner, M.F. A GIS-Based Back-Propagation Neural Network Model and Its Cross-Application and Validation for Landslide Susceptibility Analyses. Comput. Environ. Urban Syst. 2010, 34, 216–235. [Google Scholar] [CrossRef]
- Shahri, A.A.; Shan, C.; Larsson, S. A Novel Approach to Uncertainty Quantification in Groundwater Table Modeling by Automated Predictive Deep Learning. Nat. Resour. Res. 2022, 31, 1351–1373. [Google Scholar] [CrossRef]
- Li, X.; Liu, X. Research on Identification Method of Key Road Sections in the Road Network under Disaster Situation. In Proceedings of the 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang, China, 15–17 May 2020; pp. 575–578. [Google Scholar] [CrossRef]
- Chamorro, A.; Echaveguren, T.; Allen, E.; Contreras, M.; Cartes, P.; Contreras, M.; Jimenez, G.; Pattillo, C.; Solminihac, H.D.; Vargas, J.; et al. Risk Management System for Road Networks Exposed to Natural Hazards. Lifelines 2022, 166–177. [Google Scholar] [CrossRef]
Item | Data Format | Time (Year) | Scale or Resolution | Sources |
---|---|---|---|---|
Road network | Vector | 2021 | 1:1,000,000 | National geographic information resource directory service system (https://www.webmap.cn/main.do?method=inde (accessed on 18 November 2022)) |
Landslide | Vector | – | – | Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn (accessed on 12 November 2022)) |
DEM | Raster | 2019 | 30 m | Computer Network Information Center of Chinese Academy of Sciences, Geography (https://www.cnic.cn/front/pc.html?_1608531541135#/cnicSite/arpKnowledge/324/168/324/TRUE (accessed on 15 November 2022)) |
NDVI | Raster | 2001–2020 | 30 m | The National Data Center for Ecological Sciences Science Data Bank (http://www.nesdc.org.cn/sdo/detail?id=60f68d757e28174f0e7d8d49 (accessed on 19 November 2022)) |
Precipitation | Raster | 2001–2020 | 1000 m | Science Data Bank (https://www.scidb.cn/en/cstr/31253.11.sciencedb.01607 (accessed on 18 November 2022)) |
River system | Vector | 2021 | 1:1,000,000 | National geographic information resource directory service system (https://www.webmap.cn/main.do?method=inde (accessed on 4 December 2022)) |
Glacier snow | Vector | 2014 | – | Cold and arid region scientific data center (http://westdc.westgis.ac.cn (accessed on 18 November 2022)) |
Geological fault zone | Vector | – | 1:1,000,000 | Data Sharing Infrastructure of National Earthquake Data Center (http://data.earthquake.cn (accessed on 21 November 2022)) |
Seismic center | Vector | 1908–2019 | – | Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn (accessed on 4 December 2022)) |
Soil erosion | Raster | – | 1000 m | Environmental Sciences and Data, Chinese Academy of Sciences (https://www.resdc.cn (accessed on 14 November 2022)) |
Habitation | Vector | 2021 | – | National geographic information resource directory service system (https://www.webmap.cn/main.do?method=inde (accessed on 7 December 2022)) |
Primary Variable | Environmental Evaluation Factors | Sources/Quantization Level |
---|---|---|
Topography | Slope (°) | (0–8), (8–18), (18–29), (29–41), (41–87) |
Topographic relief (m) | (0–14), (14–29), (29–48), (48–76), (76–1101) | |
Soil-vegetation conditions | Soil erosion intensity | Slight, mild, moderate, intense, violent |
NDVI | (0–0.07), (0.07–0.19), (0.19–0.36), (0.36–0.59), (0.59–1) | |
Hydrology | Annual mean precipitation (mm) | (103–307), (307–414), (414–558), (558–702), (702–1292) |
Distance from river system (m) | (0–2683), (2683–5161), (5161–7892), (7892–12369), (12369–32160) | |
Distance from glacier snow (m) | (0–22,847), (22,847–50,636), (50,636–84,646), (84,646–133,843), (133,843–254,081) | |
Crustal motion | Distance from geological fault zone (m) | (0–11,650), (11,650–22,926), (22,926–37,011), (37,011–55,852), (55,852–126,975) |
Distance from seismic center (m) | (0–18,107), (18,107–33,688), (33,688–52,430), (52,430–76,820), (76,820–139,894) | |
Human activity | Distance from habitation (m) | (0–27,044), (27,044–79,403), (79,403–150,741), (150,741–233,019), (233,019–357,650) |
Factor i over Factor j | Scaling |
---|---|
Equal | 1 |
Moderate | 3 |
Strong | 5 |
Very strong | 7 |
Extreme | 9 |
Median value of two adjacent judgments | 2, 4, 6, 8 |
Opposites | Reciprocals |
B1 | B2 | B3 | B4 | B5 | W | |
---|---|---|---|---|---|---|
B1 | 1 | 2 | 3 | 1/3 | 1/2 | 0.17 |
B2 | 1/2 | 1 | 3 | 1/3 | 1 | 0.14 |
B3 | 1/3 | 1/3 | 1 | 1/5 | 1/3 | 0.06 |
B4 | 3 | 3 | 5 | 1 | 3 | 0.44 |
B5 | 2 | 1 | 3 | 1/3 | 1 | 0.19 |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
RI | 0 | 0 | 0.52 | 0.89 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.52 | 1.54 | 1.56 | 1.58 |
Risk Level (km) | Ngari Prefecture | Qamdo City | Lhasa City | Nyingchi City | Nagqu City | Xigaze City | Shannan City |
---|---|---|---|---|---|---|---|
Very low | 1590 | 1 | 153 | 0 | 660 | 945 | 28 |
Low | 2734 | 91 | 319 | 11 | 2833 | 2470 | 322 |
Medium | 3001 | 579 | 504 | 268 | 3763 | 3206 | 976 |
High | 1394 | 2059 | 714 | 1597 | 2785 | 1972 | 1467 |
Extremely high | 144 | 3861 | 525 | 1981 | 1316 | 421 | 1043 |
Total mileage | 8862 | 6591 | 2215 | 3858 | 11357 | 9015 | 3836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Cheng, L.; Chen, S.; Chen, H.; Chen, M.; Li, N.; Li, Z.; Dongye, S.; Gu, Y.; Yi, J. Study on Road Network Vulnerability Considering the Risk of Landslide Geological Disasters in China’s Tibet. Remote Sens. 2023, 15, 4221. https://doi.org/10.3390/rs15174221
Yao Y, Cheng L, Chen S, Chen H, Chen M, Li N, Li Z, Dongye S, Gu Y, Yi J. Study on Road Network Vulnerability Considering the Risk of Landslide Geological Disasters in China’s Tibet. Remote Sensing. 2023; 15(17):4221. https://doi.org/10.3390/rs15174221
Chicago/Turabian StyleYao, Yunchang, Liang Cheng, Song Chen, Hui Chen, Mingfei Chen, Ning Li, Zeming Li, Shengkun Dongye, Yifan Gu, and Junfan Yi. 2023. "Study on Road Network Vulnerability Considering the Risk of Landslide Geological Disasters in China’s Tibet" Remote Sensing 15, no. 17: 4221. https://doi.org/10.3390/rs15174221
APA StyleYao, Y., Cheng, L., Chen, S., Chen, H., Chen, M., Li, N., Li, Z., Dongye, S., Gu, Y., & Yi, J. (2023). Study on Road Network Vulnerability Considering the Risk of Landslide Geological Disasters in China’s Tibet. Remote Sensing, 15(17), 4221. https://doi.org/10.3390/rs15174221