Remote Sensing Parameter Extraction of Artificial Young Forests under the Interference of Undergrowth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview and Data Collection
2.2. Methods
2.2.1. Removing Noise Points, Normalization, and CHM Generation of Point Cloud Data
2.2.2. UAV Imagery Processing
2.2.3. Marker-Controlled Watershed Segmentation Algorithm
2.2.4. Point Cloud Clustering Segmentation Algorithm
2.2.5. Segmentation Result Accuracy Verification
3. Results
3.1. Analysis of Individual Tree Identification Accuracy Based on Multiple Data Sources in the Sample Plots
3.2. Evaluation of Single Tree Width Extraction Accuracy Based on Multiple Data Sources
3.2.1. Verification of Crown Width Extraction Accuracy Using Different Data Sources
3.2.2. Verification of Crown Height Extraction Accuracy Using Different Data Sources
4. Discussion
4.1. The Influence of Plot Characteristics on Tree Identification Using Different Data Sources
4.2. The Influence of Tree Characteristics on the Extraction of Individual Tree Feature Parameters from Different Data Sources
4.3. The Differences in the Accuracy of Extracting Individual Tree Information Based on Different Data
5. Conclusions
- (1)
- All three types of data achieved good results in single tree recognition, with F-values ranging from 0.95 to 0.997, the precision (p) of single tree segmentation ranging from 0.929 to 1, and the recall of single tree segmentation ranging from 0.903 to 1. Since the CHM data and point cloud data contained tree height information, the local maxima obtained through dynamic window searching were used as treetops for single tree recognition. Therefore, the accuracy of single tree recognition was higher for CHM data and point cloud data than for UAV imagery, and the single tree recognition based on point cloud data yielded the best results.
- (2)
- The crown width extraction results based on UAV imagery were superior to the CHM and point cloud data. The MSE values for the three sample plots were 0.043, 0.125, and 0.046, respectively, which are better than the values obtained for the CHM data (0.103, 0.128, and 0.4) and point cloud data (0.36, 0.461, and 0.4). Additionally, linear regression fitting performed better than the CHM and point cloud data.
- (3)
- The fitting effect of extracting the single tree height using the point cloud clustering segmentation algorithm was overall better than that of the watershed segmentation on CHM images, with mean squared errors of 0.116, 0.155, and 0.112 for the three sample plots. The overall fitting effect was good, while the CHM data, due to ground holes, were found to result in potentially larger errors during generation, leading to a worse fitting effect.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santoro, M.; Cartus, O.; Fransson, J.E. Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations. Remote Sens. Environ. 2022, 270, 112846. [Google Scholar] [CrossRef]
- Mao, C.; Yi, L.; Xu, W.; Dai, L.; Bao, A.; Wang, Z.; Zheng, X. Study on Biomass Models of Artificial Young Forest in the Northwestern Alpine Region of China. Forests 2022, 13, 1828. [Google Scholar] [CrossRef]
- Shu, Q.; Tang, S. The Status and Trend of International Forest Resources Monitoring. World For. Res. 2005, 18, 33–37. [Google Scholar]
- Zheng, X.; Yi, L.; Li, Q.; Bao, A.; Wang, Z.; Xu, W. Developing biomass estimation models of young trees in typical plantation on the Qinghai-Tibet Plateau. Chin. J. Appl. Ecol. 2022, 33, 2923–2935. [Google Scholar] [CrossRef]
- Li, P.; Shen, X.; Dai, J.; Cao, L. Comparisons and Accuracy Assessments of LiDAR-Based Tree Segmentation Approaches in Planted Forests. Sci. Silvae Sin. 2018, 54, 127–136. [Google Scholar]
- Zhang, J.; Fiddler, G.O.; Young, D.H.; Shestak, C.; Carlson, R. Allometry of tree biomass and carbon partitioning in ponderosa pine plantations grown under diverse conditions. For. Ecol. Manag. 2021, 497, 119526. [Google Scholar] [CrossRef]
- Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 2014, 329, 237–254. [Google Scholar] [CrossRef]
- Cuny, H.E.; Rathgeber, C.B.K.; Frank, D.; Fonti, P.; Makinen, H.; Prislan, P.; Rossi, S.; del Castillo, E.M.; Campelo, F.; Vavrcik, H.; et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 2015, 1, 15160. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Pang, Y. Review on forest parameters inversion using LiDAR. J. Remote Sens. 2016, 20, 1138–1150. [Google Scholar]
- Zhang, Y.; Shi, X.; Han, Z. Review of Forest Carbon Sink Measurement Methods—Based on Choice of Beijing. For. Econ. 2014, 36, 44–49. [Google Scholar] [CrossRef]
- Dong, Z.; Liang, F.; Yang, B.; Xu, Y.; Zang, Y.; Li, J.; Wang, Y.; Dai, W.; Fan, H.; Hyyppä, J. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 163, 327–342. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Ma, K.; Chen, Z.; Fu, L.; Tian, W.; Jiang, F.; Yi, J.; Du, Z.; Sun, H. Performance and sensitivity of individual tree segmentation methods for uav-lidar in multiple forest types. Remote Sens. 2022, 14, 298. [Google Scholar] [CrossRef]
- Lu, X.; Guo, Q.; Li, W.; Flanagan, J. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data. ISPRS J. Photogramm. Remote Sens. 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Marinelli, D.; Paris, C.; Bruzzone, L. A triangulation-based technique for tree-top detection in heterogeneous forest structures using high density LiDAR data. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Ma, K.; Xiong, Y.; Jiang, F.; Chen, S.; Sun, H. A novel vegetation point cloud density tree-segmentation model for overlapping crowns using UAV lidar. Remote Sens. 2021, 13, 1442. [Google Scholar] [CrossRef]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Gao, S.; Lu, J. An Automated Hierarchical Approach for Three-Dimensional Segmentation of Single Trees Using UAV LiDAR Data. Remote Sens. 2018, 10, 1999. [Google Scholar] [CrossRef]
- Hu, X.; Chen, W.; Xu, W. Adaptive mean shift-based identification of individual trees using airborne LiDAR data. Remote Sens. 2017, 9, 148. [Google Scholar] [CrossRef]
- Fan, W.; Yang, B.; Dong, Z.; Liang, F.; Xiao, J.; Li, F. Confidence-guided roadside individual tree extraction for ecological benefit estimation. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102368. [Google Scholar] [CrossRef]
- Geng, L.; Li, M.; Fan, W.; Wang, B. Individual Tree Structure Parameters and Effective Crown of the Stand Extraction Base on Airborn LiDAR Data. Sci. Silvae Sin. 2018, 54, 62–72. [Google Scholar]
- Yu, H.; Feng, S.; Shen, Y.; Liu, P. Research on single tree segmentation algorithm of UAV LiDAR plantation. Laser Infrared 2022, 52, 757–762. [Google Scholar]
- Huo, L.; Zhang, X. Individual Tree Information Extraction and Accuracy Evaluation Based on Airborne LiDAR Point Cloud by Multilayer Clustering Method. Sci. Silvae Sin. 2021, 57, 85–94. [Google Scholar]
- Liu, H.; Fan, W.; Xu, Y.; Lin, W. Research on single tree segmentation based on UAV LiDAR point cloud data. J. Cent. South Univ. For. Technol. 2022, 42, 45–53. [Google Scholar]
- Gao, L.; Zhang, X.; Chen, Y. Estimation of individual tree parameters of plantation economic forest in Hainan Boao based on airborne LiDAR point cloud data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 169–176. [Google Scholar]
- Solares-Canal, A.; Alonso, L.; Picos, J.; Armesto, J. Automatic tree detection and attribute characterization using portable terrestrial lidar. Trees 2023, 37, 963–979. [Google Scholar] [CrossRef]
- Gharineiat, Z.; Tarsha Kurdi, F.; Campbell, G. Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques. Remote. Sens. 2022, 14, 4685. [Google Scholar] [CrossRef]
- Schmohl, S.; Narváez Vallejo, A.; Soergel, U. Individual Tree Detection in Urban ALS Point Clouds with 3D Convolutional Networks. Remote. Sens. 2022, 14, 1317. [Google Scholar] [CrossRef]
- Windrim, L.; Bryson, M. Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning. Remote Sens. 2020, 12, 1469. [Google Scholar] [CrossRef]
- Man, Q.; Dong, P.; Yang, X.; Wu, Q.; Han, R. Automatic Extraction of Grasses and Individual Trees in Urban Areas Based on Airborne Hyperspectral and LiDAR Data. Remote Sens. 2020, 12, 2725. [Google Scholar] [CrossRef]
- Jingyun, F.; Xiangping, W.; Zehao, S.; Zhiyao, T.; Jinsheng, H.; Dan, y.; Yuan, J.; Zhiheng, W.; Chengyang, Z.; Jiangling, Z.; et al. Methods and protocols for plant community inventory. Biodivers. Sci. 2009, 17, 533–548. [Google Scholar] [CrossRef]
- Xiangkun, L.; Zhenglei, L. Volume measurement of Qinghai lake by GPS RTK technology. Anal. Instrum. 2019, 1, 93–95. [Google Scholar] [CrossRef]
- Xuejing, W.; Zhonghui, W.; Wenjun, S.; Zhihang, H. The Geometric Correction of Color Remote Sensing Image. Syst. Eng. Electron. 2002, 24, 126–128. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Q.; Liu, G.; Huang, C. Individual Tree Crown Extraction of High Resolution Image Based on Marker-controlled Watershed Segmentation Method. J. Geo-Inf. Sci. 2016, 18, 1259–1266. [Google Scholar]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M.J.P.E.; Sensing, R. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote. Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Hollaus, M.; Wagner, W.; Eberhoefer, C.; Karel, W. Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment. Isprs J. Photogramm. Remote Sens. 2006, 60, 323–338. [Google Scholar] [CrossRef]
- Minghua, L.; Yuzhu, C.; Shufang, Z.; Shunzhen, X. Extractionand Recognitionof Individual treeInformation on Aerial Image Data Used Watershed Algorithm. J. Northeast. For. Univ. 2019, 47, 58–62+70. [Google Scholar] [CrossRef]
- Tao, C.; Linjie, G.; Xinyan, Z.; Shu, T.; Yin, G. Visible light vegetation extraction of hue saturation and lightness color model. Bull. Surv. Mapp. 2022, 2, 116–120. [Google Scholar]
- Qi, C.; Dennis, B.; Peng, G.; Maggi, K. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm. Eng. Remote. Sens. 2006, 72, 923–932. [Google Scholar]
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Li, C.; Lu, J. A Self-Adaptive Mean Shift Tree-Segmentation Method Using UAV LiDAR Data. Remote Sens. 2020, 12, 515. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Xing, Y.; Li, D.; Zhao, X. The single tree segmentation of UAV high-density LiDAR point cloud data based on coniferous plantations. J. Cent. South Univ. For. Technol. 2022, 8, 66–77. [Google Scholar] [CrossRef]
- Zhanmei, L.; Danzhou, C.R.; Yuhe, G.; Fadong, W. Study on Health Evaluation of Picea Crassifolia Kom. Plantation in Xining City. Qinghai Agric. For. Technol. 2021, 1, 25–30+35. [Google Scholar]
- Cao, C.; Bao, Y.; Chen, W.; Tian, R.; Dang, Y.; Li, L.; Li, G. Extraction of forest structural parameters based on the intensity information of high-density airborne light detection and ranging. J. Appl. Remote Sens. 2012, 6, 063533. [Google Scholar]
Plots | Parameters | Minimum | Maximum | Mean | Median | Standard Deviation | Number |
---|---|---|---|---|---|---|---|
1 | DBH/cm * | 0.84 | 3.50 | 1.74 | 1.64 | 0.60 | 216 |
DGH/cm ** | 1.08 | 7.95 | 5.24 | 5.33 | 1.14 | ||
Tree height/m | 0.41 | 2.85 | 1.47 | 1.51 | 0.48 | ||
Crown width/m | 0.19 | 1.92 | 1.22 | 1.24 | 0.30 | ||
2 | DBH/cm * | 1.13 | 8.27 | 3.19 | 3.19 | 1.08 | 175 |
DGH/cm ** | 1.48 | 9.96 | 6.55 | 7.08 | 1.86 | ||
Tree height/m | 0.48 | 3.93 | 2.44 | 2.62 | 0.70 | ||
Crown width/m | 0.36 | 2.54 | 1.63 | 1.71 | 0.46 | ||
3 | DBH/cm * | 1.26 | 5.07 | 2.84 | 2.75 | 0.69 | 232 |
DGH/cm ** | 3.03 | 10.07 | 6.64 | 6.66 | 1.14 | ||
Tree height/m | 1.47 | 3.35 | 2.42 | 2.44 | 0.33 | ||
Crown width/m | 1.21 | 2.60 | 1.66 | 1.66 | 0.19 |
LiDAR | |
---|---|
Point Cloud Data Rate | Single Return: Up to 240,000 points/s Multiple Returns: Up to 480,000 points/s |
System Accuracy | Planar Accuracy: 10 cm @ 50 m Vertical Accuracy: 5 cm @ 50 m |
Range Accuracy | 3cm@100m |
Maximum Returns | 3 |
FOV * | Non-repetitive Scan: 70.4° (horizontal) × 77.2° (vertical) Repetitive Scan: 70.4° (horizontal) × 4.5° (vertical) |
Laser Power | Repetitive Scan: 9 W Non-repetitive Scan: 8 W |
Plots | Data | Number of Trees | Number of Measurements | p | r | F |
---|---|---|---|---|---|---|
1 | CHM | 216 | 198 | 0.991 | 0.986 | 0.988 |
UAV image | 216 | 199 | 0.9567 | 0.943 | 0.950 | |
Point Cloud | 216 | 211 | 0.991 | 0.977 | 0.984 | |
2 | CHM | 175 | 168 | 1.000 | 0.960 | 0.980 |
UAV image | 175 | 184 | 0.929 | 0.977 | 0.953 | |
Point Cloud | 175 | 168 | 1.000 | 0.960 | 0.980 | |
3 | CHM | 232 | 245 | 0.945 | 1.000 | 0.972 |
UAV image | 232 | 241 | 0.930 | 1.000 | 0.964 | |
Point Cloud | 232 | 232 | 0.994 | 1.000 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Yi, L.; Wang, Z.; Zheng, X.; Xiong, S.; Bao, A.; Xu, W. Remote Sensing Parameter Extraction of Artificial Young Forests under the Interference of Undergrowth. Remote Sens. 2023, 15, 4290. https://doi.org/10.3390/rs15174290
Tao Z, Yi L, Wang Z, Zheng X, Xiong S, Bao A, Xu W. Remote Sensing Parameter Extraction of Artificial Young Forests under the Interference of Undergrowth. Remote Sensing. 2023; 15(17):4290. https://doi.org/10.3390/rs15174290
Chicago/Turabian StyleTao, Zefu, Lubei Yi, Zhengyu Wang, Xueting Zheng, Shimei Xiong, Anming Bao, and Wenqiang Xu. 2023. "Remote Sensing Parameter Extraction of Artificial Young Forests under the Interference of Undergrowth" Remote Sensing 15, no. 17: 4290. https://doi.org/10.3390/rs15174290
APA StyleTao, Z., Yi, L., Wang, Z., Zheng, X., Xiong, S., Bao, A., & Xu, W. (2023). Remote Sensing Parameter Extraction of Artificial Young Forests under the Interference of Undergrowth. Remote Sensing, 15(17), 4290. https://doi.org/10.3390/rs15174290