ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery
Abstract
:1. Introduction
- We proposed a novel interactive segmentation model, ARE-Net, for building extraction from high-resolution remote sensing images. Compared to state-of-the-art interactive information encoding modules, the proposed ARE module can learn more priori information to support the segmentation task in buildings of various shapes.
- We designed a two-stage training strategy that guides the network to treat clicks at different stages differently in order to more efficiently refine the accuracy of building semantic segmentation.
- We conducted an evaluation of the method on the Wuhan University aerial building dataset (WHU [50]) and the Inria aerial dataset (Inira [51]). The experimental results demonstrated that the proposed method could achieve better performance compared to existing methods while significantly reducing the number of annotations.
2. Materials and Methods
2.1. An Overview of ARE-Net
2.2. Adaptive-Radius Encoding
Algorithm 1 Adaptive-radius encoding |
|
2.3. Two-Stage Training Strategy
3. Experiments and Results
3.1. Dataset
3.2. Evaluation Metrics
3.3. Implementation Details
3.4. Results
3.4.1. RoC and CG Analysis
3.4.2. Generalizability Analysis
3.4.3. Labeling Cost Analysis
3.4.4. Comprehensive Comparison
4. Discussion
4.1. Comparison with Fully Supervised Classification Methods
4.2. Visualization Analysis
4.3. Qualitative Result
4.4. Ablation Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikzad, M.; Gao, Y.; Zhou, J. An attention-based lattice network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5526215. [Google Scholar] [CrossRef]
- Farooq, A.; Jia, X.; Hu, J.; Zhou, J. Transferable convolutional neural network for weed mapping with multisensor imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4404816. [Google Scholar] [CrossRef]
- Han, Z.; Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Chanussot, J. Multimodal hyperspectral unmixing: Insights from attention networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5524913. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Liu, F.; Lyu, X.; Tong, Y.; Xu, Z.; Zhou, J. A Synergistical Attention Model for Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5400916. [Google Scholar] [CrossRef]
- Weng, Q.; Chen, H.; Chen, H.; Guo, W.; Mao, Z. A Multisensor Data Fusion Model for Semantic Segmentation in Aerial Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6511905. [Google Scholar] [CrossRef]
- Bo, Z.; Chao, W.; Hong, Z.; Fan, W. A review on building extraction and Reconstruction from SAR image. Remote Sens. Technol. Appl. 2012, 27, 496–503. [Google Scholar]
- Feng, T.; Zhao, J. Review and comparison: Building extraction methods using high-resolution images. In Proceedings of the 2009 Second International Symposium on Information Science and Engineering, Shanghai, China, 26–28 December 2009; pp. 419–422. [Google Scholar]
- Benedek, C.; Descombes, X.; Zerubia, J. Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 33–50. [Google Scholar] [CrossRef]
- Mishra, A.; Pandey, A.; Baghel, A.S. Building detection and extraction techniques: A review. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 3816–3821. [Google Scholar]
- Yu, Y.; Fu, L.; Cheng, Y.; Ye, Q. Multi-view distance metric learning via independent and shared feature subspace with applications to face and forest fire recognition, and remote sensing classification. Knowl.-Based Syst. 2022, 243, 108350. [Google Scholar] [CrossRef]
- Jozdani, S.; Chen, D. On the versatility of popular and recently proposed supervised evaluation metrics for segmentation quality of remotely sensed images: An experimental case study of building extraction. ISPRS J. Photogramm. Remote Sens. 2020, 160, 275–290. [Google Scholar] [CrossRef]
- Gong, M.; Liu, T.; Zhang, M.; Zhang, Q.; Lu, D.; Zheng, H.; Jiang, F. Context-content collaborative network for building extraction from high-resolution imagery. Knowl.-Based Syst. 2023, 263, 110283. [Google Scholar] [CrossRef]
- Grinias, I.; Panagiotakis, C.; Tziritas, G. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2016, 122, 145–166. [Google Scholar] [CrossRef]
- Chen, K.; Zou, Z.; Shi, Z. Building extraction from remote sensing images with sparse token transformers. Remote Sens. 2021, 13, 4441. [Google Scholar] [CrossRef]
- Luo, L.; Li, P.; Yan, X. Deep learning-based building extraction from remote sensing images: A comprehensive review. Energies 2021, 14, 7982. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Cheng, M.M.; Hou, Q.B.; Zhang, S.H.; Rosin, P.L. Intelligent visual media processing: When graphics meets vision. J. Comput. Sci. Technol. 2017, 32, 110–121. [Google Scholar] [CrossRef]
- Cheng, M.M.; Zhang, F.L.; Mitra, N.J.; Huang, X.; Hu, S.M. Repfinder: Finding approximately repeated scene elements for image editing. ACM Trans. Graph. TOG 2010, 29, 83. [Google Scholar]
- Lin, Z.; Zhang, Z.; Chen, L.Z.; Cheng, M.M.; Lu, S.P. Interactive image segmentation with first click attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13339–13348. [Google Scholar]
- Sofiiuk, K.; Petrov, I.; Barinova, O.; Konushin, A. f-brs: Rethinking backpropagating refinement for interactive segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8623–8632. [Google Scholar]
- Dupont, C.; Ouakrim, Y.; Pham, Q.C. UCP-net: Unstructured contour points for instance segmentation. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 3373–3379. [Google Scholar]
- Wang, G.; Zuluaga, M.A.; Li, W.; Pratt, R.; Patel, P.A.; Aertsen, M.; Doel, T.; David, A.L.; Deprest, J.; Ourselin, S.; et al. DeepIGeoS: A deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1559–1572. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Xiao, P.; Zheng, Z. On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3266–3281. [Google Scholar] [CrossRef]
- Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. TOG 2004, 23, 309–314. [Google Scholar] [CrossRef]
- Cheng, M.M.; Prisacariu, V.A.; Zheng, S.; Torr, P.H.; Rother, C. Densecut: Densely connected crfs for realtime grabcut. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2015; Volume 34, pp. 193–201. [Google Scholar]
- Wu, J.; Zhao, Y.; Zhu, J.Y.; Luo, S.; Tu, Z. Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 256–263. [Google Scholar]
- Maninis, K.K.; Caelles, S.; Pont-Tuset, J.; Van Gool, L. Deep extreme cut: From extreme points to object segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 616–625. [Google Scholar]
- Papadopoulos, D.P.; Uijlings, J.R.; Keller, F.; Ferrari, V. Extreme clicking for efficient object annotation. In Proceedings of the IEEE international conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4930–4939. [Google Scholar]
- Bai, J.; Wu, X. Error-tolerant scribbles based interactive image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 392–399. [Google Scholar]
- Freedman, D.; Zhang, T. Interactive graph cut based segmentation with shape priors. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 755–762. [Google Scholar]
- Gulshan, V.; Rother, C.; Criminisi, A.; Blake, A.; Zisserman, A. Geodesic star convexity for interactive image segmentation. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3129–3136. [Google Scholar]
- Xu, N.; Price, B.; Cohen, S.; Yang, J.; Huang, T.S. Deep interactive object selection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 373–381. [Google Scholar]
- Li, Z.; Chen, Q.; Koltun, V. Interactive image segmentation with latent diversity. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 577–585. [Google Scholar]
- Jang, W.D.; Kim, C.S. Interactive image segmentation via backpropagating refinement scheme. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5297–5306. [Google Scholar]
- Forte, M.; Price, B.; Cohen, S.; Xu, N.; Pitié, F. Interactive training and architecture for deep object selection. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Hao, Y.; Liu, Y.; Wu, Z.; Han, L.; Chen, Y.; Chen, G.; Chu, L.; Tang, S.; Yu, Z.; Chen, Z.; et al. Edgeflow: Achieving practical interactive segmentation with edge-guided flow. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1551–1560. [Google Scholar]
- Zhao, F.; Xie, X. An overview of interactive medical image segmentation. Ann. BMVA 2013, 2013, 1–22. [Google Scholar]
- Mortensen, E.N.; Barrett, W.A. Interactive segmentation with intelligent scissors. Graph. Model. Image Process. 1998, 60, 349–384. [Google Scholar] [CrossRef]
- Cremers, D.; Rousson, M.; Deriche, R. A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. Int. J. Comput. Vis. 2007, 72, 195–215. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef]
- Boykov, Y.Y.; Jolly, M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In Proceedings of the Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 105–112. [Google Scholar]
- Grady, L. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1768–1783. [Google Scholar] [CrossRef]
- Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641–647. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., Yann, L., Eds.; Conference Track Proceeding. Conference Publishing Services (CPS): Los Angeles, CA, USA, 2015. [Google Scholar]
- Sofiiuk, K.; Petrov, I.A.; Konushin, A. Reviving iterative training with mask guidance for interactive segmentation. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2022; pp. 3141–3145. [Google Scholar]
- Chen, X.; Zhao, Z.; Zhang, Y.; Duan, M.; Qi, D.; Zhao, H. FocalClick: Towards practical interactive image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1300–1309. [Google Scholar]
- Yang, L.; Zi, W.; Chen, H.; Peng, S. DRE-Net: A Dynamic Radius-Encoding Neural Network with an Incremental Training Strategy for Interactive Segmentation of Remote Sensing Images. Remote Sens. 2023, 15, 801. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3226–3229. [Google Scholar]
- Sofiiuk, K.; Barinova, O.; Konushin, A. Adaptis: Adaptive instance selection network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7355–7363. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, X.; Wang, J. Object-contextual representations for semantic segmentation. In Computer Vision–ECCV 2020: Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part VI 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 173–190. [Google Scholar]
Data | NoC | RITM | RGB-BRS | BRS | f-BRS | FocalClick | ARE-Net | |
---|---|---|---|---|---|---|---|---|
Inria | Austin | 4 | 4.01 | 4.16 | 4.58 | 12.39 | 3.75 | |
9.75 | 9.9 | 10.09 | 11.03 | 14.92 | 9.49 | |||
15.81 | 15.95 | 16.02 | 16.15 | 16.89 | 15.55 | |||
Chicago | 5.13 | 5.43 | 5.46 | 5.58 | 7.23 | 4.17 | ||
7.9 | 8.52 | 8.53 | 8.77 | 9.74 | 6.8 | |||
11.99 | 13.07 | 13.01 | 13.07 | 13.43 | 10.75 | |||
Kitsap | 10.3 | 11.06 | 11.49 | 11.43 | 14.19 | 9.89 | ||
14.05 | 14.55 | 14.99 | 15.28 | 16.58 | 13.55 | |||
17.89 | 18.05 | 18.09 | 18.44 | 18.45 | 17.38 | |||
Tyrol | 5.16 | 5.36 | 5.46 | 5.47 | 10.16 | 3.81 | ||
11.19 | 11.78 | 12.14 | 11.85 | 13.77 | 9.15 | |||
16.73 | 17.06 | 16.89 | 16.87 | 17.08 | 15.35 | |||
Vienna | 9.17 | 9.22 | 9.47 | 9.65 | 10.71 | 7.7 | ||
13.12 | 13.36 | 13.69 | 13.73 | 13.73 | 11.07 | |||
17.5 | 17.53 | 17.72 | 17.27 | 17.27 | 16.23 | |||
Average | 6.752 | 7.016 | 7.208 | 7.342 | 10.936 | 5.864 | ||
11.202 | 11.622 | 11.888 | 12.12 | 13.748 | 10.012 | |||
15.984 | 16.332 | 16.346 | 16.456 | 16.624 | 15.052 | |||
WHU | 1.71 | 1.66 | 1.66 | 1.67 | 11.62 | 1.53 | ||
2.69 | 2.7 | 2.75 | 2.28 | 13.62 | 2.33 | |||
9.98 | 10.22 | 10.38 | 10.9 | 15.69 | 8.68 |
Data | NoC | RITM | RGB-BRS | BRS | f-BRS | FocalClick | ARE-Net | |
---|---|---|---|---|---|---|---|---|
Inria | Austin | 2.77 | 2.65 | 2.95 | 2.77 | 12.79 | 2.31 | |
6.95 | 6.92 | 7.64 | 7.62 | 14.99 | 6.05 | |||
14.2 | 14.21 | 14.67 | 14.57 | 17 | 13.54 | |||
Chicago | 4.35 | 4.66 | 4.91 | 4.58 | 7.83 | 3.36 | ||
6.71 | 7.41 | 7.73 | 7.22 | 10.17 | 5.63 | |||
10.82 | 11.77 | 12.2 | 11.53 | 13.67 | 9.32 | |||
Kitsap | 9.67 | 10.37 | 10.87 | 10.64 | 14.73 | 9.35 | ||
13.32 | 13.84 | 14.32 | 14.27 | 16.76 | 13.05 | |||
17.48 | 17.64 | 17.78 | 18.01 | 18.55 | 16.97 | |||
Tyrol | 4.53 | 4.69 | 4.73 | 4.67 | 10.63 | 3.4 | ||
10.63 | 11.26 | 11.31 | 11.05 | 14.41 | 8.4 | |||
16.28 | 16.96 | 16.79 | 16.65 | 17.27 | 14.92 | |||
Vienna | 7.55 | 7.7 | 7.92 | 7.9 | 10.08 | 6.11 | ||
10.74 | 11.11 | 11.49 | 11.36 | 13.85 | 9.29 | |||
15.89 | 16.14 | 16.52 | 16.57 | 17.18 | 14.44 | |||
Average | 5.774 | 6.014 | 6.296 | 6.112 | 11.212 | 4.906 | ||
9.67 | 10.108 | 10.498 | 10.31 | 14.036 | 8.484 | |||
14.934 | 15.344 | 15.592 | 15.466 | 16.734 | 13.838 | |||
WHU | 1.59 | 1.52 | 1.52 | 1.53 | 11.13 | 1.43 | ||
2.19 | 2.1 | 2.2 | 2.19 | 13.13 | 1.88 | |||
5.94 | 6.12 | 6.71 | 6.87 | 15.39 | 5.02 |
Model | Data | NoF | RITM | RGB-BRS | BRS | f-BRS | FocalClick | ARE-Net |
---|---|---|---|---|---|---|---|---|
HRNet18s +OCR | Inria | 253 | 314 | 468 | 789 | 1067 | 158 | |
787 | 807 | 1092 | 1377 | 1360 | 603 | |||
WHU | 43 | 11 | 12 | 25 | 1023 | 10 | ||
131 | 85 | 225 | 635 | 11980 | 51 | |||
HRNet32 +OCR | Inria | 169 | 147 | 438 | 600 | 1020 | 99 | |
590 | 649 | 1019 | 1212 | 1309 | 419 | |||
WHU | 36 | 9 | 14 | 14 | 922 | 8 | ||
78 | 27 | 136 | 248 | 1122 | 25 |
Model | Data | Time Cost | RITM | RGB-BRS | BRS | f-BRS | FocalClick | ARE-Net |
---|---|---|---|---|---|---|---|---|
HRNet18s +OCR | Inria | SPC, s | 0.0298 | 1.3492 | 0.9994 | 0.0622 | 0.0334 | 0.034 |
Time, H:M:S | 0:18:56 | 14:00:28 | 10:43:48 | 0:40:47 | 0:21:59 | 0:19:40 | ||
WHU | SPC, s | 0.024 | 0.885 | 0.06 | 0.035 | 0.033 | 0.033 | |
Time, H:M:S | 0:06:51 | 6:11:53 | 4:25:08 | 0:16:53 | 0:15:45 | 0:08:19 | ||
HRNet32 +OCR | Inria | SPC, s | 0.0566 | 1.2884 | 0.8944 | 0.0994 | 0.053 | 0.0574 |
Time, H:M:S | 0:32:44 | 13:00:40 | 9:06:25 | 1:00:26 | 0:35:01 | 0:31:59 | ||
WHU | SPC, s | 0.06 | 1.338 | 0.939 | 0.096 | 0.053 | 0.059 | |
Time, H:M:S | 0:10:21 | 3:56:11 | 3:01:04 | 0:19:03 | 0:23:36 | 0:08:37 |
Model | Metrics | First | Second | Third | Fourth | Fifth | Sixth |
---|---|---|---|---|---|---|---|
HRNet18s +OCR | ROC | ARE | RTIM | RGB-BRS | BRS | f-BRS | FocalClick |
CG | ARE | RTIM | RGB-BRS | BRS | f-BRS | FocalClick | |
Generalizability | ARE | RGB-BRS | RITM | BRS | f-BRS | FocalClick | |
Labeling costs | RITM | ARE | FocalClick | f-BRS | BRS | RGB-BRS | |
HRNet32 +OCR | ROC | ARE | RTIM | RGB-BRS | BRS | f-BRS | FocalClick |
CG | ARE | RTIM | RGB-BRS | BRS | f-BRS | FocalClick | |
Generalizability | ARE | RGB-BRS | RITM | BRS | f-BRS | FocalClick | |
Labeling costs | ARE | RITM | FocalClick | f-BRS | BRS | RGB-BRS |
Dataset | HRNet18s+OCR | ARE (with 1 Click) | ARE (with 2 Clicks) | ARE (with 3 Clicks) | ARE (with 5 Clicks) | ARE (with 10 Clicks) | ARE (with 20 Clicks) |
---|---|---|---|---|---|---|---|
Inria | 73% | 66.86% | 75.84% | 79.25% | 82.27% | 85.39% | 87.94% |
WHU | 87.86% | 82.15% | 87.07% | 88.48% | 89.75% | 91% | 92.02% |
Dataset | HRNet32s+OCR | ARE (with 1 Click) | ARE (with 2 Clicks) | ARE (with 3 Clicks) | ARE (with 5 Clicks) | ARE (with 10 Clicks) | ARE (with 20 Clicks) |
---|---|---|---|---|---|---|---|
Inria | 74.61% | 71.02% | 78.17% | 80.95% | 83.71% | 86.55% | 88.92% |
WHU | 89.06% | 83.89% | 88.72% | 89.99% | 91.15% | 92.28% | 93.11% |
Baseline | ARE Module | Two-Stage Training Strategy | |||
---|---|---|---|---|---|
✓ | 9.17 | 13.12 | 17.5 | ||
✓ | ✓ | 8 | 11.67 | 16.49 | |
✓ | ✓ | 8.56 | 12.27 | 17.5 | |
✓ | ✓ | ✓ | 7.7 | 11.07 | 16.23 |
Baseline | ARE Module | Two-Stage Training Strategy | ||
---|---|---|---|---|
✓ | 163 | 270 | ||
✓ | ✓ | 122 | 218 | |
✓ | ✓ | 138 | 245 | |
✓ | ✓ | ✓ | 113 | 212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Q.; Wang, Q.; Lin, Y.; Lin, J. ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery. Remote Sens. 2023, 15, 4457. https://doi.org/10.3390/rs15184457
Weng Q, Wang Q, Lin Y, Lin J. ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery. Remote Sensing. 2023; 15(18):4457. https://doi.org/10.3390/rs15184457
Chicago/Turabian StyleWeng, Qian, Qin Wang, Yifeng Lin, and Jiawen Lin. 2023. "ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery" Remote Sensing 15, no. 18: 4457. https://doi.org/10.3390/rs15184457
APA StyleWeng, Q., Wang, Q., Lin, Y., & Lin, J. (2023). ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery. Remote Sensing, 15(18), 4457. https://doi.org/10.3390/rs15184457