The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers
Abstract
:1. Introduction
2. Lidar Configuration
2.1. Laser Emission System and the Key Technologies
2.1.1. Pump Laser
2.1.2. 786 nm/846 nm Seeder Laser
2.1.3. OPO Module and OPA Module
2.1.4. SHG Module
2.2. Receiving and Acquisition System
3. Advantages of Lidar Using OPO/OPA Technology
3.1. Gain Higher Emission Energy
3.2. With a Narrower Bandwidth
3.3. System Stability and Reliability
4. Initial Observation Results
4.1. Original Echo Signal Data Analysis
4.2. Density Evolution of the Ca Layer and the Ca+ Layer
4.3. Up to 300 km Ca+ Layer
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plane, J.M.C. The chemistry of meteoric metals in the Earth’s upper atmosphere. Int. Rev. Phys. Chem. 1991, 10, 55–106. [Google Scholar] [CrossRef]
- Plane, J.M.C. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 2012, 41, 6507–6518. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Nishimura, Y.; Xu, Z.; Yu, Z.; Plane, J.M.C.; Gardner, C.S.; Ogawa, Y. First Simultaneous Lidar Observations of Thermosphere-Ionosphere Fe and Na (TIFe and TINa) Layers at McMurdo (77.84°S, 166.67°E), Antarctica With Concurrent Measurements of Aurora Activity, Enhanced Ionization Layers, and Converging Electric Field. Geophys. Res. Lett. 2020, 47, e2020GL090181. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Papen, G.C. Resonance fluorescence lidar for measurements of the middle and upper atmosphere. In Laser Remote Sensing; Fujii, T., Fukuchi, T., Eds.; CRC Press Taylor and Francis: Boca Raton, FL, USA, 2005; pp. 179–432. [Google Scholar]
- Chu, X.; Yu, Z.; Gardner, C.S.; Chen, C.; Fong, W. Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155 km) at McMurdo (77.8°S, 166.7°E), Antarctica. Geophys. Res. Lett. 2011, 38, L23807. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, N.; Soon, W.; Lu, G.; Jia, M.; Wang, X.; Xue, X.; Li, T.; Dou, X. The sporadic sodium layer: A possible tracer for the conjunction between the upper and lower atmospheres. Atmos. Chem. Phys. 2021, 21, 11927–11940. [Google Scholar] [CrossRef]
- Granier, G.; Jégou, J.P.; Mégie, G. Resonant lidar detection of Ca and Ca+ in the upper atmosphere. Geophys. Res. Lett. 1985, 12, 655–658. [Google Scholar] [CrossRef]
- Gardner, C.S.; Kane, T.J.; Senft, D.C.; Qian, J.; Papen, G.C. Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: Three case studies. J. Geophys. Res. 1993, 98, 16865–16874. [Google Scholar] [CrossRef]
- Qian, J.; Gardner, C.S. Simultaneous lidar measurements of mesospheric Ca, Na, and temperature profiles at Urbana, Illinois. J. Geophys. Res. Atmos. 1995, 100, 7453–7461. [Google Scholar] [CrossRef]
- Alpers, M.; Hoffner, J.; von Zahn, U. Upper atmosphere Ca and Ca+ at mid-latitudes: First simultaneous and common-volume lidar observations. Geophys. Res. Lett. 1996, 23, 567–570. [Google Scholar] [CrossRef]
- Gerding, M.; Alpers, M.; von Zahn, U.; Rollason, R.J.; Plane, J.M.C. Atmospheric Ca and Ca+ layers: Midlatitude observations and modeling. J. Geophys. Res. Atmos. 2000, 105, 27131–27146. [Google Scholar] [CrossRef]
- Tepley, C.A.; Raizada, S.; Zhou, Q.; Friedman, J.S. First simultaneous observations of CaC, K, and electron density using lidar and incoherent scatter radar at Arecibo. Geophys. Res. Lett. 2003, 30, 1009. [Google Scholar]
- Raizada, S.; Tepley, C.; Janches, D.; Friedman, J.; Zhou, Q.; Mathews, J. Lidar observations of Ca and K metallic layers from Arecibo and comparison with micrometeor sporadic activity. J. Atmos. Sol.-Terr. Phys. 2004, 66, 595–606. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Plane, J.M.C.; Gumbel, J. On the global distribution of sporadic sodium layers. Geophys. Res. Lett. 2007, 34, L15808. [Google Scholar] [CrossRef]
- Wu, F.; Zheng, H.; Cheng, X.; Yang, Y.; Li, F.; Gong, S.; Du, L.; Wang, J.; Yang, G. Simultaneous detection of the Ca and CaC layers by a dual-wavelength tunable lidar system. Appl. Opt. 2020, 59, 4122–4130. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Jiao, J.; Li, F.; Lin, X.; Liu, Z.; Batista, P.; Pimenta, A.; Andrioli, V.; Wang, J.; Chen, X.; et al. The technical optimization of Na-K lidar and to measure mesospheric Na and K over Brazil. J. Quant. Spectrosc. Radiat. Transf. 2021, 259, 107383. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Xie, Y.; Wang, T.; Dai, D.; Xiao, C.; Yang, X. Vibrational overtone excitation of D2 in a molecular beam with a high-energy, narrow-bandwidth, nanosecond optical parametric oscillator/amplifier. Rev. Sci. Instrum. 2020, 91, 053001. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Z.; Wu, Y.; Xia, Y.; Xun, Y.; Wu, F.; Jiao, J.; Du, L. Calculation of Resonance Fluorescence Scattering Cross Sections of Metal Particles in the Middle and Upper Atmosphere and Comparison of Their Detectability. Atmosphere 2023, 14, 1283. [Google Scholar] [CrossRef]
- She, C.-Y.; Vance, J.D.; Kawahara, T.D.; Williams, B.P.; Wu, Q. A proposed all-solid-state transportable narrow-band sodium lidar for mesopause region temperature and horizontal wind measurements. Can. J. Phys. 2007, 85, 111–118. [Google Scholar] [CrossRef]
- Raizada, S.; Tepley, C.A.; Aponte, N.; Cabassa, E. Characteristics of neutral calcium and Ca+ near the mesopause, and their relationship with sporadic ion/electron layers at Arecibo. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Chu, X.; Chen, Y.; Cullens, C.Y.; Yu, Z.; Xu, Z.; Zhang, S.; Huang, W.; Jandreau, J.; Immel, T.J.; Richmond, A.D. Mid-Latitude Thermosphere-Ionosphere Na (TINa) Layers Observed with High-Sensitivity Na Doppler Lidar over Boulder (40.13°N, 105.24°W). Geophys. Res. Lett. 2021, 48, e2021GL093729. [Google Scholar] [CrossRef]
- Friedman, J.S.; Chu, X.; Brum, C.G.M.; Lu, X. Observation of a thermospheric descending layer of neutral K over Arecibo. J. Atmos. Sol.-Terr. Phys. 2013, 104, 253–259. [Google Scholar] [CrossRef]
- Tsuda, T.T.; Chu, X.; Nakamura, T.; Ejiri, M.K.; Kawahara, T.D.; Yukimatu, A.S.; Hosokawa, K. A thermospheric Na layer event observed up to 140 km over Syowa Station (69.0°S, 39.6°E) in Antarctica. Geophys. Res. Lett. 2015, 42, 3647–3653. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Jiao, J.; Chu, X.; Jin, H.; Wang, Z.; Xun, Y.; Du, L.; Zheng, H.; Wu, F.; Xu, J.; Yuan, W.; et al. First Lidar Profiling of Meteoric Ca+ Ion Transport From ∼80 to 300 km in the Midlatitude Nighttime Ionosphere. Geophys. Res. Lett. 2022, 49, e2022GL100537. [Google Scholar] [CrossRef]
- Gao, Q.; Chu, X.; Xue, X.; Dou, X.; Chen, T.; Chen, J. Lidar observations of thermospheric Na layers up to 170 km with a descending tidal phase at Lijiang (26.7°N, 100.0°E), China. J. Geophys. Res. Space Phys. 2015, 120, 9213–9220. [Google Scholar] [CrossRef]
- Ejiri, M.K.; Nakamura, T.; Tsuda, T.T.; Nishiyama, T.; Abo, M.; Takahashi, T.; Tsuno, K.; Kawahara, T.D.; Ogawa, T.; Wada, S. Vertical fine structure and time evolution of plasma irregularities in the Es layer observed by a high-resolution Ca+ lidar. Earth Planets Space 2019, 71, 3. [Google Scholar] [CrossRef]
- Raizada, S.; Smith, J.A.; Lautenbach, J.; Aponte, N.; Perillat, P.; Sulzer, M.; Mathews, J.D. New Lidar Observations of Ca+ in the Mesosphere and Lower Thermosphere Over Arecibo. Geophys. Res. Lett. 2020, 47, e2020GL087113. [Google Scholar] [CrossRef]
Parameter | Ca | Ca+ |
---|---|---|
Wavelength (nm) (in the air) | 422.6728 | 393.3663 |
Pulse energy (mJ) | 31 | 30 |
Repetition rate (Hz) | 15 | 15 |
Linewidth (MHz) | 169.3 | 154.6 |
Telescope aperture (m) | 1.23 | |
Focal length (m) | 2.4 | |
Fiber diameter (mm) | 1.5 | |
Optical filter FWHM (nm) | 1 | |
Count rate (MHz) | 150 | |
Time resolution(s) | 66.7 | |
Spatial resolution(m) | 96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Zheng, H.; Xiao, C.; Cheng, X.; Wu, F.; Jiao, J.; Xun, Y.; Chen, Z.; Wang, J.; Yang, G. The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers. Remote Sens. 2023, 15, 4566. https://doi.org/10.3390/rs15184566
Du L, Zheng H, Xiao C, Cheng X, Wu F, Jiao J, Xun Y, Chen Z, Wang J, Yang G. The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers. Remote Sensing. 2023; 15(18):4566. https://doi.org/10.3390/rs15184566
Chicago/Turabian StyleDu, Lifang, Haoran Zheng, Chunlei Xiao, Xuewu Cheng, Fang Wu, Jing Jiao, Yuchang Xun, Zhishan Chen, Jiqin Wang, and Guotao Yang. 2023. "The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers" Remote Sensing 15, no. 18: 4566. https://doi.org/10.3390/rs15184566
APA StyleDu, L., Zheng, H., Xiao, C., Cheng, X., Wu, F., Jiao, J., Xun, Y., Chen, Z., Wang, J., & Yang, G. (2023). The All-Solid-State Narrowband Lidar Developed by Optical Parametric Oscillator/Amplifier (OPO/OPA) Technology for Simultaneous Detection of the Ca and Ca+ Layers. Remote Sensing, 15(18), 4566. https://doi.org/10.3390/rs15184566