A Data Driven Approach for Analyzing the Effect of Climate Change on Mosquito Abundance in Europe
Abstract
:1. Introduction
2. Data
2.1. EO Data
2.1.1. Environmental Data
2.1.2. Topographical Data
2.2. Entomological Data
2.3. Climatic Data
2.4. Areas of Interest
3. Methodology
3.1. Problem Set-Up
3.2. Our Implementation
- Estimator : an XGboost regression model was used as the estimator [52]. For this selection we took into account the size of the available datasets (800–6K observations per AOI), and the fact that we had tabular data containing categorical variables extracted in the feature engineering process from the initial data (such as the province based on the coordinates of the observation) [53,54]. We also used recursive feature elimination in order to reduce the complexity of the model by eliminating the features that do not contribute to the model (a more detailed view on the estimator can be found in [14]).
- Search of optimal parameters : we trained our model by relying on historical data of the last 10 years. We selected the Mean Squared Error (MSE) as the optimization criterion,
- The features : We created a wide range of features, reported in Table A2. To make our model more sensitive to the climatic factors of temperature and precipitation, we created more meta-features that rely on those two (e.g., accumulated precipitation over two weeks, etc.), increasing the sensitivity of the model to those two parameters. The exact number of features that the model selects for each case is not predefined and it is decided according to the recursive feature elimination process.
- Calculation of : Future projections of climate from the EURO-CORDEX initiative framework for a bounding polygon of each area were used to calculate the difference from the decade 2010–2020 which was used as the baseline decade. Thus, for each climatic factor, the difference of the mean decade value was calculated between every 2020 to 2100 decade and the baseline decade.
- Calculation of : The impact of climate change is studied by injecting on the variables to project to each future decade. This future set is given as input in so as to estimate and calculate compared with the initial estimations.
4. Results
4.1. Model Validation
4.2. Performance Analysis of Climatic Factors
4.2.1. Mean Value Change
4.2.2. Variance Change
4.3. Climatic Analysis
Impact of Climate Change on Mosquito Abundance
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RCP | Representative Concentration Pathway |
VBD | Vector Borne Disease |
MBD | Mosquito-Borne Disease |
WNV | West Nile Virus |
ECDC | European Center for Disease Prevention and Control |
MA | Mosquito Abundance |
ML | Machine Learning |
EO | Earth Observation |
LST | Land Surface Temperature |
IMERG | Integrated Multi-satellite Retrievals for GPM |
DEM | Digital Elevation Model |
AOI | Area of Interest |
RCM | Regional Climate Model |
GCM | Global Climate Model |
MSE | Mean Squared Error |
MAE | Mean Absolute Error |
Appendix A
RCM | Driving GCM | Realization | |
---|---|---|---|
1 | ALADIN63.v2 | CNRM.CNRM-CERFACS-CNRM-CM5 | r1i1p1 |
2 | CCLM4-8-17.v1 | CLMcom.ICHEC-EC-EARTH | r12i1p1 |
3 | HIRHAM5.v2 | DMI.ICHEC-EC-EARTH | r3i1p1 |
4 | RACMO22E.v1 | KNMI.ICHEC-EC-EARTH | r12i1p1 |
5 | RACMO22E.v2 | KNMI.MOHC-HadGEM2-ES | r1i1p1 |
6 | RACMO22E.v2 | KNMI.CNRM-CERFACS-CNRM-CM5 | r1i1p1 |
7 | RCA4.v1 | SMHI.MOHC-HadGEM2-ES | r1i1p1 |
8 | RCA4.v1 | SMHI.MPI-M-MPI-ESM-LR | r1i1p1 |
9 | RCA4.v1 | SMHI.ICHEC-EC-EARTH | r12i1p1 |
10 | REMO2009.v1 | MPI-CSC.MPI-M-MPI-ESM-LR | r1i1p1 |
11 | REMO2009.v1 | MPI-CSC.MPI-M-MPI-ESM-LR | r2i1p1 |
Feature | Explanation |
---|---|
dt_placement | Date of the observation |
station_id | Station ID |
x | Longitude |
y | Latitude |
lst_day | Land surface temperature at day |
lst_night | Land surface temperature at night |
lst | Mean Land surface temperature of day and night |
lst_Jan_mean | Mean land surface temperature in January |
lst_Feb_mean | Mean land surface temperature in February |
lst_Mar_mean | Mean land surface temperature in March |
lst_Apr_mean | Mean land surface temperature in April |
acc_precipitation_1week | Accumulated precipitation counting towards one week before the date of placement |
acc_precipitation_2week | Accumulated precipitation counting towards two weeks before the date of placement |
acc_precipitation_jan | Accumulated precipitation counting from the 1st of January of each year |
wc_l_1000 | Water course length of national hydrological data within a buffer zone of 1000 m around each sampling/trapping site |
dem_1000 | Mean elevation (resolution = 12.5 m), within a buffer of 1000 m around trapping sites |
aspect_1000 | Mean aspect (12.5 m), within a buffer of 1000 m around trapping sites |
slope_1000 | Mean slope (12.5 m), within a buffer of 1000 m around trapping sites |
coast_dist_1000 | Mean Distance of sampling/trapping site within a buffer of 1000 m from coastline |
wc_dist_1000 | Nearest distance of watercourses of national hydrological data within a buffer zone of 1000 m around each sampling/trapping site |
flow_acc_1000 | Mean flow accumulation within a buffer of 1000 m around trapping sites |
waw_mean_1000 | Distance of sampling/trapping sites from nearest surface water polygon area within a buffer of 1000 m around trapping sites |
days_distance | Time difference in days between the date of placement and 1 January of the corresponding year |
province | Province in which trap is located based on the coordinates |
mo_cos | Cosine transformation of the month of date of placement |
mo_sin | Sine transformation of the month of date of placement |
summer_days_year | Number of days with over 30 °C within the year |
summer_days_month | Number of days with over 30 °C within the month |
distance | Euclidean distance of coordinates between a specific point and the trap site |
PCA | 3 PCA components constructed out of all the above mentioned features |
climatic_zone | Climatic zone of x,y point based on Köppen climatic classification |
Italy | Germany | Serbia |
---|---|---|
dem_1000 | acc_precipitation_2week | days_distance |
days_distance | acc_precipitation_jan | PCA_1 |
x | days_distance | acc_precipitation_2week |
y | flow_acc_1000 | y |
lst_mar_mean | PCA_2 | x |
PCA_2 | waw_mean_1000 | acc_precipitation_jan |
flow_acc_1000 | slope_mean_1km | acc_precipitation_1week |
slope_1000 | PCA_3 | lst |
wc_l_1000 | lst | PCA_3 |
lst_feb_mean | dem_1000 | lst_night |
acc_precipitation_jan | lst_feb_mean | PCA_2 |
PCA_3 | lst_mar_mean | lst_feb_mean |
PCA_1 | acc_precipitation_1week | |
waw_mean_1000 | lst_day | |
lst_jan_mean | aspect_1000 | |
aspect_1000 | lst_night | |
lst | PCA_1 | |
acc_precipitation_2week | ||
wc_dist_1000 | ||
coast_dist_1000 | ||
lst_apr_mean | ||
acc_precipitation_1week | ||
lst_night | ||
lst_day |
References
- World Health Organization. Global Vector Control Response 2017–2030. 2017. Available online: https://www.who.int/publications/i/item/9789241512978 (accessed on 3 March 2022).
- Gubler, D. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21 Century. Trop. Med. Health 2011, 39, 3–11. [Google Scholar] [CrossRef]
- Reisen, W.K. Ecology of West Nile Virus in North America. Viruses 2013, 5, 2079–2105. [Google Scholar] [CrossRef] [PubMed]
- Parselia, E.; Kontoes, C.; Tsouni, A.; Hadjichristodoulou, C.; Kioutsioukis, I.; Magiorkinis, G.; Stilianakis, N.I. Satellite Earth Observation Data in Epidemiological Modeling of Malaria, Dengue and West Nile Virus: A Scoping Review. Remote Sens. 2019, 11, 1862. [Google Scholar] [CrossRef]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.; Semenza, J.C. Environmental Drivers of West Nile Fever Epidemiology in Europe and Western Asia—A Review. Int. J. Environ. Res. Public Health 2013, 10, 3543–3562. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. West Nile Virus Infection. Annual Epidemiological Report for 2018. 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-infection-annual-epidemiological-report-2018 (accessed on 3 March 2022).
- European Centre for Disease Prevention and Control. Number and Rates of Confirmed Malaria Reported Cases, EU/EEA 2008–2012. 2012. Available online: https://www.ecdc.europa.eu/en/publications-data/number-and-rates-confirmed-malaria-reported-cases-eueea-2008-2012 (accessed on 3 March 2022).
- European Centre for Disease Prevention and Control. Malaria—Annual Epidemiological Report for 2018. 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/malaria-annual-epidemiological-report-2018 (accessed on 3 March 2022).
- Chintalapati, D.S.; Sohani, S.; Kumar, D.; Malik, A.; Chahar, B.; Nema, A.; Panigrahi, B.; Dhiman, R. A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission. Neurocomputing 2014, 129, 279–288. [Google Scholar] [CrossRef]
- Guo, P.; Liu, T.; Zhang, Q.; Wang, L.; Xiao, J.; Zhang, Q.; Luo, G.; Li, Z.H.; He, J.; Zhang, Y.; et al. Developing a dengue forecast model using machine learning: A case study in China. PLoS Neglected Trop. Dis. 2017, 11, e0005973. [Google Scholar] [CrossRef]
- Young, S.; Tullis, J.; Cothren, J. A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus. Appl. Geogr. 2013, 45, 241–249. [Google Scholar] [CrossRef]
- Scavuzzo, J.; Trucco, F.; Espinosa, M.; Tauro, C.; Abril, M.; Scavuzzo, C.; Frery, A. Modeling Dengue Vector Population Using Remotely Sensed Data and Machine Learning. Acta Trop. 2018, 185, 167–175. [Google Scholar] [CrossRef]
- Tsantalidou, A.; Parselia, E.; Arvanitakis, G.; Kyratzi, K.; Gewehr, S.; Vakali, A.; Kontoes, C. MAMOTH: An Earth Observational Data-Driven Model for Mosquitoes Abundance Prediction. Remote Sens. 2021, 13, 2557. [Google Scholar] [CrossRef]
- Franklinos, L.; Jones, K.; Redding, D.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef] [PubMed]
- Dohm, D.J.; O’Guinn, M.L.; Turell, M.J. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J. Med. Entomol. 2002, 39, 221–225. [Google Scholar] [CrossRef]
- Benedum, C.; Seidahmed, O.; Eltahir, E.; Markuzon, N. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Neglected Trop. Dis. 2018, 12, e0006935. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Roobavannan, M.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Kharecha, P.; Russell, G.; Lea, D.; Siddall, M. Climate change and trace gases. Philos. Trans. R. Soc. A 2007, 365, 1925–1954. [Google Scholar] [CrossRef]
- Iwamura, T.; Guzman-Holst, A.; Murray, K. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 2020, 11, 2130. [Google Scholar] [CrossRef]
- Ryan, S.; Carlson, C.; Mordecai, E.; Johnson, L. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. bioRxiv 2019. [Google Scholar] [CrossRef]
- Tonnang, H.; Kangalawe, R.; Yanda, P. Predicting and mapping malaria under climate change scenarios: The potential redistribution of malaria vectors in Africa. Malar. J. 2010, 9, 111. [Google Scholar] [CrossRef]
- Le, P.; Kumar, P.; Ruiz, M.; Mbogo, C.; Muturi, J. Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya. PLoS ONE 2019, 14, e0211258. [Google Scholar] [CrossRef]
- Colón-González, F.J.; Sewe, M.; Tompkins, A.; Sjödin, H.; Casallas García, A.; Rocklöv, J.; Caminade, C.; Lowe, R. Projecting the risk of mosquito-borne diseases in a warmer and more populated world—A multi-model, multi-scenario intercomparison modelling study. Lancet Planet. Health 2021, 5, e404–e414. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 2020, 27, 22336–22352. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.; Cobbold, C.; Purse, B.; Nunn, M.; White, S. Modelling the Effect of Temperature on the Seasonal Population Dynamics of Temperate Mosquitoes. J. Theor. Biol. 2016, 400, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Valdez, L.; Sibona, G.; Diaz, L.; Contigiani, M.; Condat, C. Effects of rainfall on Culex mosquito population dynamics. J. Theor. Biol. 2017, 421, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Bartlow, A.; Manore, C.; Xu, C.; Kaufeld, K.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Fair, J. Forecasting Zoonotic Infectious Disease Response to Climate Change: Mosquito Vectors and a Changing Environment. Vet. Sci. 2019, 6, 40. [Google Scholar] [CrossRef]
- Brugueras, S.; Fernandez-Martinez, B.; Martínez-de la Puente, J.; Figuerola, J.; Tomas, M.; Rius, C.; Larrauri, A.; gomez barroso, D. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Environ. Res. 2020, 191, 110038. [Google Scholar] [CrossRef]
- Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. Climatic effects on mosquito abundance in Mediterranean wetlands. Parasites Vectors 2014, 7, 333. [Google Scholar] [CrossRef]
- Cailly, P.; Tran, A.; Balenghien, T.; L’Ambert, G.; Toty, C.; Ezanno, P. A climate-driven abundance model to assess mosquito control strategies. Ecol. Model. 2012, 227, 7–17. [Google Scholar] [CrossRef]
- Chuang, T.W.; Hildreth, M.; Vanroekel, D.; Wimberly, M. Weather and land cover influences on mosquito populations in Sioux Falls, South Dakota. J. Med. Entomol. 2011, 48, 669–679. [Google Scholar] [CrossRef]
- Moss, R.; Edmonds, J.; Hibbard, K.; Manning, M.; Rose, S.; Vuuren, D.; Carter, T.; Emori, S.; Kainuma, M.; Kram, T.; et al. The Next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Vuuren, D.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Climatic Change. This issue. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Core Writing Team; Pachauri, R. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Vuuren, D.; Stehfest, E.; Elzen, M.; Kram, T.; Vliet, J.; Deetman, S.; Isaac, M.; Klein Goldewijk, K.; Hof, A.; Mendoza Beltran, A.; et al. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 2011, 109, 95. [Google Scholar] [CrossRef]
- Thomson, A.; Calvin, K.; Smith, S.; Kyle, P.; Volke, A.; Patel, P.; Delgado Arias, S.; Bond-Lamberty, B.; Wise, M.; Clarke, L.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G. Emissions—The `business as usual’ story is misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.; Teichmann, C.; Sobolowski, S.; Katragkou, E.; Anders, I.; Belda, M.; Benestad, R.; Boberg, F.; Buonomo, E.; Cardoso, R.; et al. Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Chang. 2020, 20, 51. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.; Bouwer, L.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernández, J.; Garcia-Diez, M.; Goergen, K.; Güttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Georgoulias, A.; Akritidis, D.; Kalisoras, A.; Kapsomenakis, J.; Melas, D.; Zerefos, C.; Zanis, P. Climate change projections for Greece in the 21st century from high-resolution EURO-CORDEX RCM simulations. Atmos. Res. 2022, 271, 106049. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://tcktcktck.org/europe (accessed on 14 September 2023).
- Beck, H.; Zimmermann, N.; McVicar, T.; Vergopolan, N.; Berg, A.; Wood, E. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.citypopulation.de/Europe.html (accessed on 14 September 2023).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? arXiv 2022, arXiv:2207.08815. [Google Scholar] [CrossRef]
- Borisov, V.; Leemann, T.; Sessler, K.; Haug, J.; Pawelczyk, M.; Kasneci, G. Deep Neural Networks and Tabular Data: A Survey. IEEE Trans. Neural Networks Learn. Syst. 2022, 153–168. [Google Scholar] [CrossRef]
Case | Mean Temperature (°C) | Mean Precipitation (mm) | Climatic Zone | Population Density/km2 |
---|---|---|---|---|
Veneto, Italy | 15.9 | 152.54 | CSA (Temperate Dry Summer Hot Summer) | 263.7 |
Upper Rhine Valley, Germany | 10.79 | 43.85 | CFB (Temperate No dry season Warm Summer) | 311.2 |
Pancevo, Serbia | 15.12 | 84.86 | CFB (Temperate No dry season Warm Summer) | 80.51 |
Case | # Features | Mean | Std | MAE | Scaled MAE |
---|---|---|---|---|---|
Veneto, Italy | 24 | 87 | 112 | 57 | 0.51 |
Upper Rhine Valley, Germany | 17 | 16 | 51 | 16 | 0.31 |
Pancevo, Serbia | 12 | 189 | 202 | 118 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsantalidou, A.; Arvanitakis, G.; Georgoulias, A.K.; Akritidis, D.; Zanis, P.; Fornasiero, D.; Wohlgemuth, D.; Kontoes, C. A Data Driven Approach for Analyzing the Effect of Climate Change on Mosquito Abundance in Europe. Remote Sens. 2023, 15, 5649. https://doi.org/10.3390/rs15245649
Tsantalidou A, Arvanitakis G, Georgoulias AK, Akritidis D, Zanis P, Fornasiero D, Wohlgemuth D, Kontoes C. A Data Driven Approach for Analyzing the Effect of Climate Change on Mosquito Abundance in Europe. Remote Sensing. 2023; 15(24):5649. https://doi.org/10.3390/rs15245649
Chicago/Turabian StyleTsantalidou, Argyro, George Arvanitakis, Aristeidis K. Georgoulias, Dimitris Akritidis, Prodromos Zanis, Diletta Fornasiero, Daniel Wohlgemuth, and Charalampos Kontoes. 2023. "A Data Driven Approach for Analyzing the Effect of Climate Change on Mosquito Abundance in Europe" Remote Sensing 15, no. 24: 5649. https://doi.org/10.3390/rs15245649
APA StyleTsantalidou, A., Arvanitakis, G., Georgoulias, A. K., Akritidis, D., Zanis, P., Fornasiero, D., Wohlgemuth, D., & Kontoes, C. (2023). A Data Driven Approach for Analyzing the Effect of Climate Change on Mosquito Abundance in Europe. Remote Sensing, 15(24), 5649. https://doi.org/10.3390/rs15245649