An Investigation of Impacts of Surface Waves-Induced Mixing on the Upper Ocean under Typhoon Megi (2010)
Abstract
:1. Introduction
2. Data and Methods
2.1. Typhoon Megi (2010) and Observations
2.2. Description for the Coupled Model and Simulation
2.3. Parametrization Scheme of Wave-Induced Mixing
2.3.1. Wave Orbital Motion
2.3.2. Wave Breaking
2.4. Numerical Experiments
3. Results
3.1. SST and MLD
3.2. Sea Surface and Subsurface Currents
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, B.; Liu, H.; Xie, L.; Guan, C.; Zhao, D. A Coupled Atmosphere-Wave-Ocean Modeling System: Simulation of the Intensity of an Idealized Tropical Cyclone. Mon. Wea. Rev. 2011, 139, 132–152. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. Ocean Modell. 2010, 35, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Brooks, I.M.; Yelland, M.J.; Upstill-Goddard, R.C.; Nightingale, P.D.; Archer, S.; D’Asaro, E.; Beale, R.; Beatty, C.; Blomquist, B.; Bloom, A.A.; et al. Physical exchanges at the air-sea interface UK-SOLAS field measurements. Bull. Amer. Meteor. Soc. 2009, 90, 629–644. [Google Scholar] [CrossRef]
- Breviere, E.; The SOLAS Scientific Steering Committee (Eds.) SOLAS 2015–2025: Science Plan and Organisation; SOLAS International Project Office, GEOMAR Helmholtz Centre for Ocean Research Kiel: Kiel, Germany, 2016; 76p, Available online: https://dev.solas-int.org/science/science-plan.html (accessed on 3 January 2023).
- Kantha, L.H.; Clayson, C.A. An improved mixed layer model for geophysical applications. J. Geophys. Res. 1994, 99, 25235–25266. [Google Scholar] [CrossRef]
- Martin, P.J. Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res. 1985, 90, 903–916. [Google Scholar] [CrossRef]
- Burchard, H. Simulating the Wave-Enhanced Layer under Breaking Surface Waves with Two-Equation Turbulence Models. J. Phys. Oceanogr. 2001, 31, 3133–3145. [Google Scholar] [CrossRef]
- Craig, P.D.; Banner, M.L. Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer. J. Phys. Oceanogr. 1994, 24, 2546–2559. [Google Scholar] [CrossRef]
- Huang, C.J.; Qiao, F.; Song, Z.; Ezer, T. Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme. J. Geophys. Res. 2011, 116, C01007. [Google Scholar] [CrossRef] [Green Version]
- Cavaleri, L.; Fox-Kemper, B.; Hemer, M. Wind Waves in the Coupled Climate System. Bull. Amer. Meteor. Soc. 2012, 93, 1651–1661. [Google Scholar] [CrossRef]
- Babanin, A.V.; Haus, B.K. On the existence of water turbulence induced by nonbreaking surface waves. J. Phys. Oceanogr. 2009, 39, 2675–2679. [Google Scholar] [CrossRef]
- Cheung, T.K.; Street, R.L. The turbulent layer in the water at an air-water interface. J. Fluid Mech. 1988, 194, 133–151. [Google Scholar] [CrossRef]
- Dai, D.; Qiao, F.; Sulisz, W.; Han, L.; Babanin, A.V. An experiment on the nonbreaking surface-wave-induced vertical mixing. J. Phys. Oceanogr. 2010, 40, 2180–2188. [Google Scholar] [CrossRef]
- Babanin, A.V. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Rea. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Babanin, A.V.; Ganopolski, A.; Phillips, W.R.C. Wave-induced upper-ocean mixing in a climate model of intermediate complexity. Ocean Modell. 2009, 29, 189–197. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Yang, Y.; Zheng, Q.; Xia, C.; Ma, J. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Rea. Lett. 2004, 31, L11303. [Google Scholar] [CrossRef]
- Song, Y.; Qiao, F.; Song, Z. Improved simulation of the South Asian summer monsoon in a coupled GCM with a more realistic ocean mixed layer. J. Atmos. Sci. 2012, 69, 1681–1690. [Google Scholar] [CrossRef]
- Li, M.; Zahariev, K.; Garrett, C. Role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science 1995, 270, 1955–1957. [Google Scholar] [CrossRef]
- McWillams, J.C.; Sullivan, P.P.; Moeng, C.-H. Langmuir turbulence in the ocean. J. Fluid Mech. 1997, 334, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.J.; Liu, G.; Perrie, W.; Sheng, J. Impact of Langmuir turbulence, wave breaking, and Stokes drift on upper ocean dynamics under hurricane conditions. J. Geophys. Res.-Oceans. 2021, 126, e2021JC017388. [Google Scholar] [CrossRef]
- Reichl, B.G.; Wang, D.; Hara, T.; Ginis, I.; Kukulka, T. Langmuir Turbulence Parameterization in Tropical Cyclone Conditions. J. Phys. Oceanogr. 2016, 46, 863–886. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, P.C.; Li, W.; Liu, C.; Zhang, L.; Shao, C.; Zhang, X.; Chao, G.; Zhaop, Y. Impact of Langmuir Turbulence on the Thermal Response of the Ocean Surface Mixed Layer to Supertyphoon Haitang (2005). J. Phys. Oceanogr. 2018, 48, 1651–1674. [Google Scholar] [CrossRef]
- Li, Q.; Reichl, B.G.; Fox-Kemper, B.; Adcroft, A.J.; Belcher, S.E.; Danabasoglu, G.; Grant, A.L.; Griffies, S.M.; Hallberg, R.; Hara, T.; et al. Comparing Ocean Surface Boundary Vertical Mixing Schemes Including Langmuir Turbulence. J. Adv. Model. Earth Sy. 2019, 11, 3545–3592. [Google Scholar] [CrossRef] [Green Version]
- Aijaz, S.; Ghantous, M.; Babanin, A.V.; Ginis, I.; Thomas, B.; Wake, G. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling. J. Geophys. Res.-Oceans. 2017, 122, 3939–3963. [Google Scholar] [CrossRef] [Green Version]
- Toffoli, A.; McConochie, J.; Ghantous, M.; Loffredo, L.; Babanin, A.V. The effect of wave-induced turbulence on the ocean mixed layer during tropical cyclones: Field observations on the Australian North-West Shelf. J. Geophys. Res.-Oceans. 2012, 117, C00J24. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Song, J.; Guan, C. Simulation of the ocean surface mixed layer under the wave breaking. Acta Oceanol. Sin. 2005, 24, 9–15. [Google Scholar]
- Ghantous, M.; Babanin, A.V. Ocean mixing by wave orbital motion. Acta Phys. Slovaca 2014, 64, 1–57. [Google Scholar]
- Zhang, W.; Zhao, D.; Zhu, D.; Li, J.; Guan, C.; Sun, J. A Numerical Investigation of the Effect of Wave-Induced Mixing on Tropical Cyclones Using a Coupled Ocean-Atmosphere-Wave Model. J. Geophys. Res.-Atmospheres. 2022, 127, e2021JD036290. [Google Scholar] [CrossRef]
- Zhang, W. A Numerical Investigation of the Effect of Wave-Induced Mixing on Tropical Cyclones Using a Coupled Ocean-Atmosphere-Wave Model [Dataset]. Figshare. 2021. Available online: https://figshare.com/articles/dataset/Data_that_supports_the_Summary_Results_Tables_and_Figures_/17121335/4 (accessed on 7 June 2022).
- Zou, Z.; Zhao, D.; Tian, J.; Liu, B.; Huang, J. Drag coefficients derived from ocean current and temperature profiles at high wind speeds. Tellus A: Dyn. Meteorol. Oceanogr. 2018, 70, 1463805. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Tech; Note NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; 113p, Available online: https://opensky.ucar.edu/islandora/object/technotes%3A500/datastream/PDF/view (accessed on 2 June 2022).
- Booij, N.R.R.C.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.-Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Umlauf, L.; Burchard, H. A generic length-scale equation for geophysical. J. Mar. Res. 2003, 61, 235–265. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell. 2005, 8, 81–113. [Google Scholar] [CrossRef]
- Ghantous, M.; Babanin, A.V. One-dimensional modelling of upper ocean mixing by turbulence due to wave orbital motion. Nonlinear Proc. Geoph. 2014, 21, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Young, I.R.; Babanin, A.V.; Zieger, S. The Decay Rate of Ocean Swell Observed by Altimeter. J. Phys. Oceanogr. 2013, 43, 2322–2333. [Google Scholar] [CrossRef]
- Kumar, N.; Voulgaris, G.; Warner, J.C.; Olabarrieta, M. Implementation of the vortex force formalism in the coupled ocean-atmosphere wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell. 2012, 47, 65–95. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB using t_tide. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Oceans. 2014, 119, 3134–3157. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Wang, G.; Shang, X. Inner-Core Sea Surface Cooling Induced by a Tropical Cyclone. J. Phys. Oceanogr. 2021, 51, 3385–3400. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Guan, S.; Wang, Q.; Zhao, W.; Tian, J. Sudden Track Turning of Typhoon Prapiroon (2012) Enhanced the Upper Ocean Response. Remote Sens. 2023, 15, 302. [Google Scholar] [CrossRef]
- Dzwonkowski, B.; Fournier, S.; Lockridge, G.; Liu, Z.; Park, K. Hurricane Sally (2020) Shifts the Ocean Thermal Structure across the Inner Core during Rapid Intensification over the Shelf. J. Phys. Oceanogr. 2022, 52, 2841–2852. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, X.; Yang, C.; Qi, Y.; Tian, D.; Xu, J.; Cai, S.; Wu, R.; Ma, Y.; Ni, X.; et al. Observed impact of Typhoon Mangkhut (2018) on a continental slope in the South China Sea. J. Geophys. Res.-Oceans. 2022, 127, e2022JC018432. [Google Scholar] [CrossRef]
Expts. | Description |
---|---|
E0 | Exclude WB and WOM |
E1 | Include WB |
E2 | Include WOM |
E3 | Include both WB and WOM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Li, R.; Zhu, D.; Zhao, D.; Guan, C. An Investigation of Impacts of Surface Waves-Induced Mixing on the Upper Ocean under Typhoon Megi (2010). Remote Sens. 2023, 15, 1862. https://doi.org/10.3390/rs15071862
Zhang W, Li R, Zhu D, Zhao D, Guan C. An Investigation of Impacts of Surface Waves-Induced Mixing on the Upper Ocean under Typhoon Megi (2010). Remote Sensing. 2023; 15(7):1862. https://doi.org/10.3390/rs15071862
Chicago/Turabian StyleZhang, Wenqing, Rui Li, Donglin Zhu, Dongliang Zhao, and Changlong Guan. 2023. "An Investigation of Impacts of Surface Waves-Induced Mixing on the Upper Ocean under Typhoon Megi (2010)" Remote Sensing 15, no. 7: 1862. https://doi.org/10.3390/rs15071862
APA StyleZhang, W., Li, R., Zhu, D., Zhao, D., & Guan, C. (2023). An Investigation of Impacts of Surface Waves-Induced Mixing on the Upper Ocean under Typhoon Megi (2010). Remote Sensing, 15(7), 1862. https://doi.org/10.3390/rs15071862