The Respondence of Wave on Sea Surface Temperature in the Context of Global Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Settings of WW3
2.2. Model Settings of sbPOM
3. Results
3.1. The Validation of Model-Simulated Wave and sbPOM-Simulated Sea Surface Temperature
3.2. The Interrelation between SWH and Current
3.3. The Relationships among SWH, Sea Level, and Sea Level Anomaly
3.4. The Relationships among SWH, SST and Sea Surface Wind Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rohling, E.J.; Grant, K.; Hemleben, C.; Siddall, M.; Hoogakker, B.; Bolshaw, M.; Kucera, M. High rates of sea-level rise during the last interglacial period. Nat. Geosci. 2008, 1, 38–42. [Google Scholar] [CrossRef]
- Thompson, B.; Gnanaseelan, C.; Parekh, A.; Salvekar, P.S. North Indian ocean warming and sea level rise in an OGCM. J. Earth Syst. Sci. 2008, 117, 169–178. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Pavlov, V.; Bourke, R.H. Sea level rise in the Arctic Ocean. Geophys. Res. Lett. 2001, 28, 2237–2240. [Google Scholar] [CrossRef] [Green Version]
- Chafik, L.; Nilsen, J.E.I.; Dangendorf, S.; Reverdin, G.; Frederikse, T. North Atlantic Ocean circulation and decadal sea level change during the altimetry Era. Sci. Rep. 2019, 9, 1041. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.F.; Gong, Y.J.; Cui, J.N.; Dong, S.; Wu, K.J. Effect of the drag coefficient on a typhoon wave model. J. Oceanol. Limnol. 2019, 37, 1795–1804. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Shao, W.Z.; Shi, J.; Sun, J.; Ji, Q.Y.; Cai, L.N. Analysis of the typhoon wave distribution simulated in WAVEWATCH-III model in the context of Kuroshio and wind-induced current. J. Oceanol. Limn. 2020, 38, 1692–1710. [Google Scholar] [CrossRef]
- Gilhousen, D.B. A field evaluation of NDBC moored buoy winds. J. Atmos. Ocean. Technol. 1987, 4, 94–104. [Google Scholar] [CrossRef]
- Menéndez, M.; Méndez, F.J.; Losada, I.J.; Graham, N.E. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys. Res. Lett. 2008, 35, 113–130. [Google Scholar] [CrossRef]
- Zheng, C.W.; Zhou, L.; Shi, W.L.; Li, X.; Huang, C.F. Decadal variability of global ocean significant wave height. J. Ocean. Univ. China 2015, 14, 778–782. [Google Scholar] [CrossRef]
- Rogers, W.E.; Hwang, P.A.; Wang, D.W. Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr. 2010, 33, 366–389. [Google Scholar] [CrossRef]
- Hwang, P.A.; Teague, W.J.; Jacobs, G.A.; Wang, D.W. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res. 1998, 103, 10451–10468. [Google Scholar] [CrossRef] [Green Version]
- Stopa, J.E.; Fabrice, A.; Fanny, G.A. Wave climate in the Arctic 1992–2014: Seasonality and trends. Cryosphere 2016, 10, 1605–1629. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.Z.; Jiang, T.; Jiang, X.W.; Zhang, Y.G.; Zhou, W. Evaluation of sea surface winds and waves retrieved from the Chinese HY-2B data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 9624–9635. [Google Scholar] [CrossRef]
- Ardhuin, F.; Collard, F.; Chapron, B.; Girard-Ardhuin, F.; Guitton, G.; Mouche, A.; Stopa, J.E. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophys. Res. Lett. 2015, 42, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Hauser, D.; Tourain, C.; Hermozo, L.; Alraddawi, D.; Aouf, L.; Chapron, B.; Dalphinet, A.; Delaye, L.; Dalila, M.; Dormy, E.; et al. New observations from the SWIM radar on-board CFOSAT: Instrument validation and ocean wave measurement assessment. IEEE Trans. Geosci. Remote 2020, 59, 5–26. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.Q.; Xie, L.L.; Sun, C.R.; Liu, J.P.; Li, J.Y. China-France Oceanography Satellite (CFOSAT) simultaneously observes the typhoon-induced wind and wave fields. Acta Oceanol. Sin. 2019, 38, 158–161. [Google Scholar] [CrossRef]
- Fusco, D.; Oliveri, F. Derivation of a non-linear model equation for wave propagation in bubbly liquids. Meccanica 1989, 24, 15–25. [Google Scholar] [CrossRef]
- Tolman, H.L.; Chalikov, D.V. Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef]
- The WAVEWATCH III Development Group (WW3DG). User Manual and System Documentation of WAVEWATCH III; Version 5.16; Tech. Note 329; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2016; Volume 276, p. 326.
- Shao, W.; Jiang, T.; Zhang, Y.; Shi, J.; Wang, W. Cyclonic wave simulations based on WAVEWATCH-III using a sea surface drag coefficient derived from CFOSAT SWIM data. Atmosphere 2021, 12, 1610. [Google Scholar] [CrossRef]
- Sun, Z.F.; Shao, W.Z.; Yu, W.P.; Li, J. A Study of wave-induced effects on sea surface temperature simulations during typhoon events. J. Mar. Sci. Eng. 2021, 9, 622. [Google Scholar] [CrossRef]
- Holthuijsen, L. The continued development of the third-generation shallow water wave model ‘SWAN’. Tu Delft Dep. Hydraul. Eng. 2001, 32, 185–186. [Google Scholar]
- Ou, S.H.; Liau, J.M.; Hsu, T.W.; Tzang, S.Y. Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan. Ocean Eng. 2002, 29, 947–971. [Google Scholar] [CrossRef]
- Sun, Z.F.; Shao, W.Z.; Wang, W.L.; Yu, W.P.; Shen, W. Analysis of wave-induced Stokes transport effects on sea surface temperature simulations in the Western Pacific Ocean. J. Mar. Sci. Eng. 2021, 9, 834. [Google Scholar] [CrossRef]
- Filipot, J.F.; Ardhuin, F. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone. J. Geophys. Res. 2012, 117, C00J08. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Shao, W.; Ding, Y.; Shi, J.; Ji, Q. Wave Simulation by the SWAN Model and FVCOM Considering the Sea-Water Level around the Zhoushan Islands. J. Mar. Sci. Eng. 2020, 8, 783. [Google Scholar] [CrossRef]
- Madsen, P.A.; Sørensen, O.R. Bound waves and triad interactions in shallow water. Ocean Eng. 1993, 20, 359–388. [Google Scholar] [CrossRef]
- Sheng, Y.X.; Shao, W.Z.; Li, S.Q.; Zhang, Y.M.; Yang, H.W.; Zuo, J.C. Evaluation of typhoon waves simulated by WaveWatch-III model in shallow waters around Zhoushan islands. J. Ocean. Univ. China 2019, 18, 365–375. [Google Scholar] [CrossRef]
- Squire, V.A.; Vaughan, G.L.; Bennetts, L. Ocean surface wave evolvement in the Arctic Basin. Geophys. Res. Lett. 2009, 36, L22502. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.Z.; Jiang, X.W.; Nunziata, F.; Marino, A.; Corcione, V. Analysis of waves observed by synthetic aperture radar across ocean fronts. Ocean Dynam. 2020, 70, 1397–1407. [Google Scholar] [CrossRef]
- Polton, J.A.; Lewis, D.M.; Belcher, S.E. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr. 2005, 35, 444–457. [Google Scholar] [CrossRef]
- Nittis, K.; Perivoliotis, L.; Korres, G.; Tziavos, C.; Thanos, I. Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ. Modell. Softw. 2006, 21, 243–257. [Google Scholar] [CrossRef]
- Giunta, G.; Mariani, P.; Montella, R.; Riccio, A. pPom: A nested, scalable, parallel and Fortran 90 implementation of the Princeton ocean model. Environ. Modell. Softw. 2007, 22, 117–122. [Google Scholar] [CrossRef]
- Chen, C.S.; Huang, H.; Beardsley, R.C.; Liu, H.; Xu, Q.; Cowles, G. A finite-volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models. J. Geophys. Res. 2007, 112, C03018. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hulburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P. The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Marine Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean. Model. 2005, 8, 347–404. [Google Scholar] [CrossRef]
- Gierach, M.M.; Subrahmanyam, B.; Thoppil, P.G. Physical and biological responses to hurricane Katrina (2005) in a 1/25° nested Gulf of Mexico HYCOM. J. Marine Syst. 2009, 78, 168–179. [Google Scholar] [CrossRef]
- Gao, J.S.; Chen, B.; Shi, M.C. Summer circulation structure and formation mechanism in the Beibu Gulf. Sci China Earth Sci. 2015, 58, 286–299. [Google Scholar] [CrossRef]
- Jordi, A.; Wang, D.P. Sbpom: A parallel implementation of princenton ocean model. Environ. Modell. Softw. 2012, 38, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Y.; Shao, W.Z.; Li, J.; Zhang, C.L.; Cheng, L.Q.; Ji, Q.Y. Short-term variations in water temperature of the Antarctic Surface Layer. J. Mar. Sci. Eng. 2022, 10, 287. [Google Scholar] [CrossRef]
- Bi, F.; Song, J.B.; Wu, K.J.; Xu, Y. Evaluation of the simulation capability of the Wavewatch Ⅲ model for Pacific Ocean wave. Acta Oceanol. Sin. 2015, 34, 43–57. [Google Scholar] [CrossRef]
- Zheng, K.W.; Osinowo, A.; Sun, J.; Hu, W. Long term characterization of sea conditions in the East China Sea using significant wave height and wind speed. J. Ocean. Univ. China. 2018, 17, 733–743. [Google Scholar] [CrossRef]
- Barbariol, F.; Davison, S.; Falcieri, F.M.; Ferretti, R.; Ricchi, A.; Sclavo, M.; Benetazzo, A. Wind waves in the Mediterranean Sea: An ERA5 reanalysis wind-based climatology. Front. Mar. Sci. 2021, 8, 760614. [Google Scholar] [CrossRef]
- Zheng, K.W.; Sun, J.; Guan, C.L.; Shao, W.Z. Analysis of the global swell and wind-sea energy distribution using WAVEWATCH III. Adv. Meteorol. 2016, 2016, 8419580. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Zieger, S.; Babanin, A.V.; Rogers, W.E.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean. Model. 2015, 96, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. Roy. Meteor. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Shao, W.Z.; Zhu, S.; Zhang, X.; Gou, S.; Jiao, C.; Yuan, X.Z.; Zhao, L.B. Intelligent wind retrieval from Chinese Gaofen-3 SAR imagery in quad-polarization. J. Atmos. Ocean. Tech. 2019, 36, 2121–2137. [Google Scholar] [CrossRef]
- Isaksen, L.; Stoffelen, A. ERS scatterometer wind data impact on ECMWF’s tropical cyclone forecasts. IEEE. Trans. Geosci. Remote 2000, 38, 1885–1892. [Google Scholar] [CrossRef]
- Sterl, A.; Caires, S. Climatology variability and extrema of ocean waves–The web-based KNMI/ERA-40 wave atlas. Int. J. Climatol. 2005, 25, 963–977. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. Validation and non-parametric correction of significant wave height data from the ERA-40 reanalysis. J. Atmos. Ocean. Tech. 2005, 22, 443459. [Google Scholar] [CrossRef] [Green Version]
- Shaji, C.; Wang, C.; Halliwelljr, G.; Wallcraft, A.J. Simulation of tropical pacific and Atlantic oceans using a Hybrid Coordinate Ocean Model. Ocean Model. 2005, 9, 253–282. [Google Scholar] [CrossRef]
- Swain, D.; Rahman, S.H.; Ravichandran, M. Comparison of NCEP turbulent heat fluxes with in situ observations over the south-eastern Arabian Sea. Meteorol. Atmos. Phys. 2009, 104, 163–175. [Google Scholar] [CrossRef]
- Nagy, H.; Elgindy, A.; Pinardi, N.; Zavatarelli, M.; Oddo, P. A nested pre-operational model for the Egyptian shelf zone: Model configuration and validation/calibration. Dynam. Atmos. Oceans. 2017, 80, 75–96. [Google Scholar] [CrossRef]
- Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.I.; Dibarboure, G. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 2019, 15, 1207–1224. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.Z.; Yu, W.P.; Jiang, X.W.; Shi, J.; Wei, Y.L.; Ji, Q.Y. Analysis of wave distributions using the WAVEWATCH-III model in the Arctic Ocean. J. Ocean Univ. China 2022, 21, 15–21. [Google Scholar] [CrossRef]
- Cabanes, C.; Cazenave, A.; Le Provost, C. Sea level rise during past 40 years determined from satellite and in situ observations. Science 2001, 294, 840–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Forcing field | ECMWF reanalysis (ERA-5) wind with a spatial resolution of 0.25° at an interval of 1 h; sea surface current and sea level from the daily-average Copernicus Marine Environment Monitoring Service (CMEMS) with a 0.08° grid; water depth from bathymetric topography of the General Bathymetry Chart of the Oceans (GEBCO) interpolated as 10 km |
Frequency bins | Logarithmic range at [0.04118, 0.7186] at intervals of Δf/f = 0.01 |
Resolution of outputs | 0.2° grid of spatial resolution at 6-h intervals |
Directional resolution | A two-dimensional wave spectrum that is resolved into 24 regular azimuthal directions with a 15° step |
Computation resolution | Spatial propagation characterized by 300 s time steps in both the longitudinal and latitudinal directions |
Parametrizations | The input/dissipation terms referred to as ST6 and four wave components (quadruplets) and wave–wave interactions, referred to as Generalized Multiple Discrete Interaction Approximation in [28]. |
Initial field | Monthly average sea surface temperature (SST) and sea surface salinity from the Simple Ocean Data Assimilation (SODA); |
Forcing field | ERA-5 wind with a 0.25° grid of spatial resolution at 1-h interval; total heat flux from NCEP reanalysis dataset in 1993–2015; and the four wave-induced terms: breaking wave; nonbreaking wave; radiation stress; and Stokes drift [21] |
Output resolution | 0.2° grid of spatial resolution with a six-hour temporal resolution |
Boundary condition | Land shore and the ocean bottom as solid wall boundaries; the GEBCO water depth (Figure 3d) ranged from 10 to 5000 m that matched up with the depth of SODA data |
Computation resolution | 20 s in the outer mode; 600 s for the inner mode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Shao, W.; Hao, M.; Zuo, J.; Hu, S. The Respondence of Wave on Sea Surface Temperature in the Context of Global Change. Remote Sens. 2023, 15, 1948. https://doi.org/10.3390/rs15071948
Yao R, Shao W, Hao M, Zuo J, Hu S. The Respondence of Wave on Sea Surface Temperature in the Context of Global Change. Remote Sensing. 2023; 15(7):1948. https://doi.org/10.3390/rs15071948
Chicago/Turabian StyleYao, Ru, Weizeng Shao, Mengyu Hao, Juncheng Zuo, and Song Hu. 2023. "The Respondence of Wave on Sea Surface Temperature in the Context of Global Change" Remote Sensing 15, no. 7: 1948. https://doi.org/10.3390/rs15071948
APA StyleYao, R., Shao, W., Hao, M., Zuo, J., & Hu, S. (2023). The Respondence of Wave on Sea Surface Temperature in the Context of Global Change. Remote Sensing, 15(7), 1948. https://doi.org/10.3390/rs15071948