Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023
Abstract
:1. Introduction
2. Regional Setting and the May 2023 Precipitation Events
2.1. The Study Area
2.2. The Rainfall Episodes of May 2023
3. Materials and Methods
3.1. Realization of the Landslide Inventory
3.2. Predisposing and Triggering Factors
3.3. Data Analysis
4. Results
4.1. The Inventory
4.2. Predisposing and Triggering Factors
4.3. InfoVAL Analysis
5. Discussion
5.1. Comparison with Other Case Studies
5.2. Limitations of the Inventory
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides, Investigation and Mitigation, Special Report 247; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. ISBN 030906208X. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes Classification of Landslide Types, an Update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global Fatal Landslide Occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; Da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal Landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Salvati, P.; Bianchi, C.; Rossi, M.; Guzzetti, F. Societal Landslide and Flood Risk in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 465–483. [Google Scholar] [CrossRef]
- Haque, U.; Da Silva, P.F.; Devoli, G.; Pilz, J.; Zhao, B.; Khaloua, A.; Wilopo, W.; Andersen, P.; Lu, P.; Lee, J.; et al. The Human Cost of Global Warming: Deadly Landslides and Their Triggers (1995–2014). Sci. Total Environ. 2019, 682, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Corominas, J.; VanWesten, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Smith, J. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; Van Westen, C.J.; Kumar, K.V. Characterising Spectral, Spatial and Morphometric Properties of Landslides for Semi-Automatic Detection Using Object-Oriented Methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Mondini, A.C.; Chang, K.-T.; Yin, H.-Y. Combining Multiple Change Detection Indices for Mapping Landslides Triggered by Typhoons. Geomorphology 2011, 134, 440–451. [Google Scholar] [CrossRef]
- Li, Z.; Shi, W.; Myint, S.W.; Lu, P.; Wang, Q. Semi-Automated Landslide Inventory Mapping from Bitemporal Aerial Photographs Using Change Detection and Level Set Method. Remote Sens. Environ. 2016, 175, 215–230. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- De Vita, P.; Reichenbach, P.; Bathurst, J.C.; Borga, M.; Crosta, G.; Crozier, M.; Glade, T.; Guzzetti, F.; Hansen, A.; Wasowski, J. Rainfall-Triggered Landslides: A Reference List. Environ. Geol. 1998, 35, 219–233. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Cipolla, F.; Sebastiani, C.; Galli, M.; Salvati, P. Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng. Geol. 2004, 73, 229–245. [Google Scholar] [CrossRef]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner-Lam, A. A Global Landslide Catalog for Hazard Applications: Method, Results, and Limitations. Nat. Hazards 2010, 52, 561–575. [Google Scholar] [CrossRef]
- Tsai, F.; Hwang, J.-H.; Chen, L.-C.; Lin, T.-H. Post-Disaster Assessment of Landslides in Southern Taiwan after 2009 Typhoon Morakot Using Remote Sensing and Spatial Analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2179–2190. [Google Scholar] [CrossRef]
- Marc, O.; Stumpf, A.; Malet, J.-P.; Gosset, M.; Uchida, T.; Chiang, S.-H. Initial Insights from a Global Database of Rainfall-Induced Landslide Inventories: The Weak Influence of Slope and Strong Influence of Total Storm Rainfall. Earth Surf. Dyn. 2018, 6, 903–922. [Google Scholar] [CrossRef]
- Liang, X.; Segoni, S.; Yin, K.; Du, J.; Chai, B.; Tofani, V.; Casagli, N. Characteristics of Landslides and Debris Flows Triggered by Extreme Rainfall in Daoshi Town during the 2019 Typhoon Lekima, Zhejiang Province, China. Landslides 2022, 19, 1735–1749. [Google Scholar] [CrossRef]
- Ma, S.; Shao, X.; Xu, C. Characterizing the Distribution Pattern and a Physically Based Susceptibility Assessment of Shallow Landslides Triggered by the 2019 Heavy Rainfall Event in Longchuan County, Guangdong Province, China. Remote Sens. 2022, 14, 4257. [Google Scholar] [CrossRef]
- Ma, S.; Shao, X.; Xu, C. Landslides Triggered by the 2016 Heavy Rainfall Event in Sanming, Fujian Province: Distribution Pattern Analysis and Spatio-Temporal Susceptibility Assessment. Remote Sens. 2023, 15, 2738. [Google Scholar] [CrossRef]
- Burrows, K.; Marc, O.; Andermann, C. Retrieval of Monsoon Landslide Timings with Sentinel-1 Reveals the Effects of Earthquakes and Extreme Rainfall. Geophys. Res. Lett. 2023, 50, e2023GL104720. [Google Scholar] [CrossRef]
- Emberson, R.; Kirschbaum, D.B.; Amatya, P.; Tanyas, H.; Marc, O. Insights from the Topographic Characteristics of a Large Global Catalog of Rainfall-Induced Landslide Event Inventories. Nat. Hazards Earth Syst. Sci. 2022, 22, 1129–1149. [Google Scholar] [CrossRef]
- Roy, P.; Martha, T.R.; Vinod Kumar, K.; Chauhan, P.; Rao, V.V. Cluster Landslides and Associated Damage in the Dima Hasao District of Assam, India Due to Heavy Rainfall in May 2022. Landslides 2023, 20, 97–109. [Google Scholar] [CrossRef]
- Govi, M. Carta delle frane prodotte dal terremoto (Map showing landslides triggered by the earthquake). Riv. Ital. Paleontogia E Stratigr. 1977, 83, Plate 1. [Google Scholar]
- Guzzetti, F.; Malamud, B.D.; Turcotte, D.L.; Reichenbach, P. Power-Law Correlations of Landslide Areas in Central Italy. Earth Planet. Sci. Lett. 2002, 195, 169–183. [Google Scholar] [CrossRef]
- Cardinali, M.; Galli, M.; Guzzetti, F.; Ardizzone, F.; Reichenbach, P.; Bartoccini, P. Rainfall Induced Landslides in December 2004 in South-Western Umbria, Central Italy: Types, Extent, Damage and Risk Assessment. Nat. Hazards Earth Syst. Sci. 2006, 6, 237–260. [Google Scholar] [CrossRef]
- Donnini, M.; Santangelo, M.; Gariano, S.L.; Bucci, F.; Peruccacci, S.; Alvioli, M.; Althuwaynee, O.; Ardizzone, F.; Bianchi, C.; Bornaetxea, T.; et al. Landslides Triggered by an Extraordinary Rainfall Event in Central Italy on September 15, 2022. Landslides 2023, 20, 2199–2211. [Google Scholar] [CrossRef]
- Santangelo, M.; Althuwaynee, O.; Alvioli, M.; Ardizzone, F.; Bianchi, C.; Bornaetxea, T.; Brunetti, M.T.; Bucci, F.; Cardinali, M.; Donnini, M.; et al. Inventory of Landslides Triggered by an Extreme Rainfall Event in Marche-Umbria, Italy, on 15 September 2022. Sci. Data 2023, 10, 427. [Google Scholar] [CrossRef]
- Schmitt, R.G.; Tanyas, H.; Jessee, M.A.N.; Zhu, J.; Biegel, K.M.; Allstadt, K.E.; Jibson, R.W.; Thompson, E.M.; van Westen, C.J.; Sato, H.P.; et al. An Open Repository of Earthquake Triggered Ground-Failure Inventories; US Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Arrighi, C.; Domeneghetti, A. Brief communication: On the environmental impacts of 2023 flood in Emilia-Romagna. Nat. Hazards Earth Syst. Sci. 2023. [Google Scholar] [CrossRef]
- Conti, P.; Cornamusini, G.; Carmignani, L. An Outline of the Geology of the Northern Apennines (Italy), with Geological Map at 1:250,000 Scale. IJG 2020, 139, 149–194. [Google Scholar] [CrossRef]
- Borgatti, L.; Tosatti, G. Slope Instability Processes Affecting the Pietra Di Bismantova Geosite (Northern Apennines, Italy). Geoheritage 2010, 2, 155–168. [Google Scholar] [CrossRef]
- Iadanza, C.; Trigila, A.; Starace, P.; Dragoni, A.; Biondo, T.; Roccisano, M. IdroGEO: A Collaborative Web Mapping Application Based on REST API Services and Open Data on Landslides and Floods in Italy. ISPRS Int. J. Geo-Inf. 2021, 10, 89. [Google Scholar] [CrossRef]
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide: Addendum 2000; European Environment Agency: Copenhagen, Denmark, 2000; Volume 40.
- ARPAE. Atlante Climatico dell’Emilia-Romagna 1961–2015; ARPAE: Washington, DC, USA, 2017; ISBN 978-88-87854-44-2. Available online: https://www.arpae.it/dettaglio_generale.asp?id=3811&idlivello=1591 (accessed on 1 September 2023).
- ARPAE. L’evento Meteo Idrogeologico del 1–4 Maggio; ARPAE: Bologna, Italy, 2023. Available online: https://www.arpae.it/it/notizie/levento-meteo-idrogeologico-del-1-4-maggio (accessed on 25 August 2023).
- ARPAE-SIMC. L’evento Meteo Idrogeologico e Idraulico del 16–18 Maggio 2023; ARPAE-SIMC: Bologna, Italy, 2023. Available online: https://www.arpae.it/it/notizie/levento-meteo-idrogeologico-del-16-18-maggio-2023 (accessed on 25 August 2023).
- Marc, O.; Hovius, N. Amalgamation in Landslide Maps: Effects and Automatic Detection. Nat. Hazards Earth Syst. Sci. 2015, 15, 723–733. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslides, earthquakes, and erosion. Earth Planet. Sci. Lett. 2004, 229, 45–59. [Google Scholar] [CrossRef]
- Danese, M.; Lazzari, M. A kernel density estimation approach for landslide susceptibility assessment. In Mountain Risks: Bringing Science to Society, Proceedings of the International Conference of Mountain Risks, Firenze, Italy, 24–26 November 2010; CERG: Strasbourg, Italy, 2010; pp. 24–26. [Google Scholar]
- Robinson, T.R.; Rosser, N.J.; Densmore, A.L.; Williams, J.G.; Kincey, M.E.; Benjamin, J.; Bell, H.J.A. Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support. Nat. Hazards Earth Syst. Sci. 2017, 17, 1521–1540. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: London, UK, 2018. [Google Scholar]
- Epanechnikov, V.A. Non-parametric estimation of a multivariate probability density. Theory Probab. Its Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Van Westen, C.J. Statistical landslide hazard analysis. In Application Guide, ILWIS 2.1 for Windows; ITC: Enschede, The Netherlands, 1997; pp. 73–84. [Google Scholar]
- Van Westen, C.J. The Modelling of Landslide Hazards Using GIS. Surv. Geophys. 2000, 21, 241–255. [Google Scholar] [CrossRef]
- Yin, K.L.; Yan, T.Z. Statistical prediction model for slope instability of metamorphosed rocks. In Landslides-Glissements de Terrain. Proceedings of the V International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; A. A. Balkema: Rotterdam, The Netherlands, 1988; Volume 2, pp. 1269–1272. [Google Scholar]
- Tanyaş, H.; Allstadt, K.E.; Van Westen, C.J. An Updated Method for Estimating Landslide-event Magnitude. Earth Surf. Process. Landf. 2018, 43, 1836–1847. [Google Scholar] [CrossRef]
- Amatya, P.; Scheip, C.; Déprez, A.; Malet, J.-P.; Slaughter, S.L.; Handwerger, A.L.; Emberson, R.; Kirschbaum, D.; Jean-Baptiste, J.; Huang, M.-H.; et al. Learnings from Rapid Response Efforts to Remotely Detect Landslides Triggered by the August 2021 Nippes Earthquake and Tropical Storm Grace in Haiti. Nat. Hazards 2023, 118, 2337–2375. [Google Scholar] [CrossRef]
- Notti, D.; Cignetti, M.; Cardone, D.; Godone, D.; Giordan, D. Rapid Mapping of Potential Ground Effects of the May 2023 Emilia-Romagna Rainstorms. Available online: https://www.researchgate.net/publication/371292106_Rapid_mapping_of_potential_ground_effects_of_the_May_2023_Emilia-Romagna_rainstorms (accessed on 25 August 2023).
- Tanyaş, H.; Görüm, T.; Kirschbaum, D.; Lombardo, L. Could road constructions be more hazardous than an earthquake in terms of mass movement? Nat. Hazards 2022, 112, 639–663. [Google Scholar] [CrossRef]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing Landslide Inventory Maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Pellicani, R.; Spilotro, G. Evaluating the Quality of Landslide Inventory Maps: Comparison between Archive and Surveyed Inventories for the Daunia Region (Apulia, Southern Italy). Bull. Eng. Geol. Environ. 2015, 74, 357–367. [Google Scholar] [CrossRef]
ID | Station | Municipality | Province | Elevation (m asl) | Longitude | Latitude | Hydrographic Basin |
---|---|---|---|---|---|---|---|
BTO | Borgo Tossignano | Borgo Tossignano | Bologna | 98 | 11.578993 | 44.27467 | Santerno |
TAV | Le Taverne | Fontanelice | Bologna | 486 | 11.587499 | 44.2492 | Santerno |
ALB | Monte Albano | Casola Valsenio | Ravenna | 480 | 11.6734246 | 44.22432 | Senio |
PVE | Ponte Verucchio | Verucchio | Rimini | 116 | 12.405109 | 43.9829 | Marecchia |
TRE | Trebbio | Modigliana | Forlì-Cesena | 570 | 11.8371627 | 44.13697 | Lamone |
VER | Vergato | Vergato | Bologna | 193 | 11.113128 | 44.2878 | Reno |
Lithology Class | Description |
---|---|
U1 | Competent massive or well-bedded rocks (mainly limestones and dolostones) |
U2 | Siltstones, marls and limestones interbedded with marls |
U3 | Sandstones and sandstones interbedded with marls and siltstones |
U4 | Conglomerates and breccias |
U5 | Gypsum (massive or breccia facies) |
Land Use Class | Description |
---|---|
L1 | Urban (residential and industrial) |
L2 | Arable land |
L3 | Agricultural (trees and vineyard) |
L4 | Meadows |
L5 | Woods (both evergreen and deciduous) |
L6 | Bare rocks and badlands |
L7 | Shrubs |
L8 | Water (lakes, rivers and swamps) |
Predictor | Class | InfoVAL Index (Wi) |
---|---|---|
Lithology | U1: Competent massive or well-bedded rocks (mainly limestones and dolostones) | 0.09 |
U2: Siltstones, marls and limestones interbedded with marls | 0.14 | |
U3: Sandstones and sandstones interbedded with marls and siltstones | −0.41 | |
U4: Conglomerates and breccias | −0.48 | |
U5: Gypsum (massive or breccia facies) | 0.08 | |
Land use | L1: Urban (residential and industrial) | −1.60 |
L2: Arable land | −0.67 | |
L3: Agricultural (trees and shrubs) | −0.53 | |
L4: Meadows | −0.23 | |
L5: Woods (both evergreen and deciduous) | 0.56 | |
L6: Bare rock and badlands | 1.57 | |
L7: Shrubs | 0.45 | |
L8: Water (lakes, rivers and swamps) | 0.22 | |
Slope (°) | 0–10 | −0.31 |
10–20 | 0.13 | |
20–30 | 0.62 | |
30–40 | 0.71 | |
40–50 | 0.60 | |
50–60 | 0.44 | |
60–70 | 0.79 | |
70–80 | 2.16 | |
80–90 | - | |
Distance from roads (m) | 0–200 | −0.07 |
200–400 | 0.46 | |
400–600 | 0.56 | |
600–800 | 0.40 | |
800–1000 | 0.19 | |
1000–1200 | −0.24 | |
1200–1400 | −0.81 | |
1400–1600 | −0.46 | |
1600–1800 | −0.70 | |
1800–2000 | −0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrario, M.F.; Livio, F. Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023. Remote Sens. 2024, 16, 122. https://doi.org/10.3390/rs16010122
Ferrario MF, Livio F. Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023. Remote Sensing. 2024; 16(1):122. https://doi.org/10.3390/rs16010122
Chicago/Turabian StyleFerrario, Maria Francesca, and Franz Livio. 2024. "Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023" Remote Sensing 16, no. 1: 122. https://doi.org/10.3390/rs16010122
APA StyleFerrario, M. F., & Livio, F. (2024). Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023. Remote Sensing, 16(1), 122. https://doi.org/10.3390/rs16010122