Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Datasets
2.2.1. Multispectral Images
2.2.2. Auxiliary Data
3. Methodology
3.1. Cloud and Cloud Shadow Detection
3.1.1. Cloud Detection
3.1.2. Improved Cloud Shadow Detection
3.2. Snow Cover Extraction
3.2.1. Cloud-Free Snow Cover Extraction
3.2.2. Snow Cover Extraction under CCSs
4. Results
4.1. Evaluation of Cloud-Free Snow Cover
4.2. Evaluation of Cloud and Cloud Shadow Detection
4.3. Snow Cover Reconstruction under CCSs
4.4. Impact of the Terrain on Accuracy of Snow Cover Reconstruction
4.5. Mapping of Snow Cover
5. Discussion
5.1. Advantages of Combining Two Types of Satellite Data
5.2. Inter-Annual Variation Characteristics of Snow Cover in Three Hydrological Years
5.3. Limitations of Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.J. Dynamic characteristics of snow cover in western China. IAHS Publ. Ser. Proc. Rep. Intern Assoc Hydrol. Sci. 1994, 223, 141–152. [Google Scholar]
- Wang, J.; Li, S. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China. Sci. China Ser. D Earth Sci. 2006, 49, 881–888. [Google Scholar] [CrossRef]
- Wang, J.; Che, T.; Li, Z.; Li, H.Y.; Hao, X.H.; Zheng, Z.J.; Xiao, P.F.; Li, X.F.; Huang, X.D.; Zhong, X.Y.; et al. Investigation on Snow Characteristics and Their Distribution in China. Adv. Earth Sci. 2018, 33, 12–15. [Google Scholar]
- Wang, G.; Jiang, L.; Shi, J.; Su, X. A universal ratio snow index for fractional snow cover estimation. IEEE Geosci. Remote Sens. Lett. 2020, 18, 721–725. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over High Mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Hartman, R.K.; Rost, A.A.; Anderson, D.M. Operational processing of multi-source snow data. Proc. West. Snow Conf. 1995, 147, 151. [Google Scholar]
- Dankers, R.; De Jong, S.M. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images. Int. J. Remote Sens. 2004, 25, 2933–2949. [Google Scholar] [CrossRef]
- Terzago, S.; Cremonini, R.; Cassardo, C.; Fratianni, S. Analysis of snow precipitation during the period 2000-09 and evaluation of a MSG/SEVIRI snow cover algorithm in SW Italian Alps. Geogr. Fis. Din. Quat. 2012, 35, 91–99. [Google Scholar]
- Zhao, J.Y.; Chen, J.; Wu, Q.B.; Li, J.; Hou, X. Variation Characteristic of Snow Cover in the Shenglidaban Area, Tianshan Mountains, China. Mt. Res. 2018, 34, 98–106. [Google Scholar]
- Qiao, H.W.; Zhang, Y.L. FY-3C and FY-4A Satellite Data were Combined to Study the Variation of Snow Cover Area: A Case Study of Qilian Mountains. Remote Sens. Technol. Appl. 2020, 35, 1320–1328. [Google Scholar]
- Zhang, Y.L.; Song, Y.Y.; Ye, C.Q.; Liu, J.F. An Integrated Approach to Reconstructing Snow Cover Under Clouds and Cloud Shadows on Sentinel-2 Time-Series Images in a Mountainous Area. J. Hydrol. 2023, 619, 129264. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Shen, X.; Li, Y.S. Cloud detection in high-resolution remote sensing images using multi-features of ground objects. J. Geovisualization Spat. Anal. 2019, 3, 14. [Google Scholar] [CrossRef]
- Asner, G.P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 2001, 22, 3855–3862. [Google Scholar] [CrossRef]
- Kazantzidis, A.; Eleftheratos, K.; Zerefos, C.S. Effects of cirrus cloudiness on solar irradiance in four spectral bands. Atmos. Res. 2011, 102, 452–459. [Google Scholar] [CrossRef]
- Fisher, A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated morphological feature extraction. Remote Sens. 2014, 6, 776–800. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44, W03406. [Google Scholar] [CrossRef]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, N.; Yao, T. Evaluation of a cloud-gap-filled MODIS daily snow cover product over the Pacific Northwest USA. J. Hydrol. 2011, 404, 157–165. [Google Scholar] [CrossRef]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.G.; Hu, G.J.; Wang, J.W.; Sang, G.Q.; Li, J. Spatiotemporal dynamics of snowline altitude and their responses to climate change in the Tienshan Mountains, Central Asia, During 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Bousbaa, M.; Htitiou, A.; Boudhar, A.; Eljabiri, Y.; Elyoussf, H.; Bouamri, H.; Ouatiki, H.; Chehbouni, A. High-Resolution Monitoring of the Snow Cover on the Moroccan Atlas through the Spatio-Temporal Fusion of Landsat and Sentinel-2 Images. Remote Sens. 2022, 14, 5814. [Google Scholar] [CrossRef]
- Dong, C.; Menzel, L. Producing cloud-free MODIS snow cover products with conditional probability interpolation and meteorological data. Remote Sens. Environ. 2016, 186, 439–451. [Google Scholar] [CrossRef]
- Shen, H.; Meng, X.; Zhang, L. An integrated framework for the spatio–temporal–spectral fusion of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [Google Scholar] [CrossRef]
- Shendryk, Y.; Rist, Y.; Ticehurst, C.; Thorburn, P. Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 157, 124–136. [Google Scholar] [CrossRef]
- Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sens. Environ. 2019, 230, 111203. [Google Scholar] [CrossRef]
- Irish, R.R. Landsat 7 automatic cloud cover assessment. Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI. SPIE 2000, 4049, 348–355. [Google Scholar]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Scaramuzza, P.L.; Bouchard, M.A.; Dwyer, J.L. Development of the Landsat data continuity mission cloud-cover assessment algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1140–1154. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Candra, D.S.; Phinn, S.; Scarth, P. Cloud and cloud shadow masking using multi-temporal cloud masking algorithm in tropical environmental. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 95–100. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Helmer, E.H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sens. Environ. 2018, 214, 135–153. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of copernicus Sentinel-2 cloud masks obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated with a supervised active learning procedure. Remote Sens. 2019, 11, 433. [Google Scholar] [CrossRef]
- Candra, D.S.; Phinn, S.; Scarth, P. Cloud and cloud shadow masking for Sentinel-2 using multitemporal images in global area. Int. J. Remote Sens. 2020, 41, 2877–2904. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.F.; Roger, J.C.; Justice, C.O.; Masek, J.G. Validation of the LaSRC cloud detection algorithm for Landsat 8 images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2439–2446. [Google Scholar] [CrossRef]
- Richter, R.; Louis, J.; Müller-Wilm, U. Sentinel-2 MSI—Level 2A products algorithm theoretical basis document. Eur. Space Agency (Spec. Publ.) ESA SP 2012, 49, 1–72. [Google Scholar]
- Tarrioa, K.; Tanga, X.J.; Masekb, J.G.; Claverie, M.; Ju, J.C.; Qiu, S.; Zhu, Z.; Woodcock, C.E. Comparison of cloud detection algorithms for Sentinel-2 imagery. Sci. Remote Sens. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Buus-Hinkler, J.; Hansen, B.U.; Tamstorf, M.P.; Pedersen, S.B. Snow-vegetation relations in a High Arctic ecosystem: Inter-annual variability inferred from new monitoring and modeling concepts. Remote Sens. Environ. 2006, 105, 237–247. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, J.; Jiang, Z.Y.; Li, H.Y.; Hao, X.H. An effective method for snow-cover mapping of dense coniferous forests in the Upper Heihe River Basin using Landsat Operational Land Imager data. Remote Sens. 2015, 7, 17246–17257. [Google Scholar] [CrossRef]
- Pang, H.Y.; Kong, X.S.; Wang, L.L.; Qian, Y.G. A study of the extraction of snow cover using nonlinear ENDSI model. Remote Sens. Land Resour. 2018, 30, 63–71. [Google Scholar]
- Li, P.J.; Mi, D.S. Distribution of snow cover in China. J. Glaciol. Geocryol. 1983, 5, 9–18. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- He, B.; Quan, X.; Xing, M. Retrieval of leaf area index in alpine wetlands using a two-layer canopy reflectance model. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 78–91. [Google Scholar] [CrossRef]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data. 2019, 11, 493–514. [Google Scholar] [CrossRef]
- Premier, V.; Marin, C.; Notarnicola, C.; Bruzzone, L. A Multisource Statistical Method to Downscale Snow Cover Fraction in Mountain Regions. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5481–5484. [Google Scholar]
- Zhang, Y.L.; Chang, X.L.; Liang, J.; He, R. Influence of frozen ground on hydrological processes in alpine regions: A case study in an upper reach of the Heihe River. J. Glaciol. Geocryol. 2016, 38, 1362–1372. [Google Scholar]
- Ning, L.; Cheng, C.; Shen, S. Spatial-temporal variability of the fluctuation of soil temperature in the Babao River Basin, Northwest China. J. Geogr. Sci. 2019, 29, 1475–1490. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Hu, J.Z.; Chen, G.; Ma, Y.P.; Zhao, P. A D-InSAR method to improve snow depth estimation accuracy. Chin. Sci. Bull. 2022, 67, 3064–3080. [Google Scholar] [CrossRef]
- Liu, F.; Cao, G.C.; Cao, S.K.; Yang, Y.F. Research on stable isotope characteristics and recharge relationship of the main river on the southern slope of Qilian Mountains. J. Desert Res. 2020, 40, 151–161. [Google Scholar]
- Ma, Y.; Zhang, Y. Improved on Snow Cover Extraction in Mountainous Areas Based on Multi-Factor Ndsi Dynamic Threshold. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII-B3-2022, 771–778. [Google Scholar] [CrossRef]
- Barsi, J.A.; Alhammoud, B.; Czapla-Myers, J.; Gascon, F.; Haque, M.; Kaewmance, M.; Leigh, L.; Markham, B.L. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J. Remote Sens. 2018, 51, 822–837. [Google Scholar] [CrossRef]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Sun, L.; Liu, X.; Yang, Y.; Chen, T.; Wang, Q.; Zhou, X. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data. ISPRS J. Photogramm. Remote Sens. 2018, 138, 193–207. [Google Scholar] [CrossRef]
Datasets | Track/Position Information | Spatial/Radiometric Resolution | Data Period | Scenes | Application | |
---|---|---|---|---|---|---|
Multispectral images | Sentinel-2 L1C/L2A | 47SPC, 47SPB, 47SPC | 10, 20, 60 m, 12 bits | 2019/09/01–2022/08/31 | 399 | Snow cover extraction |
Landsat 8 TOA/SR | Path 133/Row 34 | 30 m, 12 bits | 35 | |||
Auxiliary | SRTM DEM | Babao River Basin | 30 m | — | — | Aspect and snow line height extraction |
ERA5-Land Daily | 0.1° | 2019/09/01–2022/08/31 | — | Air temperature | ||
GF-2 | 100.8°E _37.9° N 100.5°E _37.9°N | 0.8 m | 2020/03/23 2020/01/14 | 2 | Accuracy verification |
Sentinel-2 | Landsat 8 | Equation Number | |
---|---|---|---|
Spectral change rate | (3) | ||
Temperature probability | (4) | ||
Cloud probability | (5) |
Sentinel-2 (2020/01/13) | Landsat 8 (2020/01/14) | ||||
---|---|---|---|---|---|
Snow Pixel | Snow-Free Pixel | Snow Pixel | Snow-Free Pixel | ||
GF-2 (2020/01/14) | Snow pixel | 508,205 | 33,788 | 366,637 | 67,204 |
Snow-free pixel | 78,259 | 102,959 | 52,578 | 124,745 | |
Evaluating indicator | U | M | L | O | |
Sentinel-2 | 93.77% | 43.19% | 6.23% | 84.51% | |
Landsat 8 | 84.51% | 29.65% | 15.49% | 80.4% |
Sentinel-2 (2020/03/21) | ||||||
---|---|---|---|---|---|---|
Improved SNOWL | Original SNOWL | |||||
Snow Pixel | Snow-Free Pixel | Snow Pixel | Snow-Free Pixel | |||
GF-2 (2020/03/23) | Snow pixel | 174,998 | 27,872 | 156,322 | 26,595 | |
Snow-free pixel | 58,124 | 185,574 | 68,099 | 165,633 | ||
Landsat 8 (2021/02/17) | ||||||
Sentinel-2 (2021/02/19) | Snow pixel | 11,941 | 2938 | 3430 | 1553 | |
Snow-free pixel | 1239 | 21224 | 1510 | 10,390 | ||
Evaluating indicator | U | M | L | O | Kappa | |
S2 | Improved SNOWL | 86.26% | 23.85% | 13.74% | 80.74% | 0.616 |
Original SNOWL | 85.46% | 29.1% | 14.54% | 77.27% | 0.549 | |
L8 | Improved SNOWL | 80.25% | 5.52% | 19.75% | 88.81% | 0.766 |
Original SNOWL | 68.83% | 12.69% | 31.17% | 81.86% | 0.563 |
Elevation | SCR | U | O | M | L | |
---|---|---|---|---|---|---|
Unit: m | Unit: Percentage (%) | |||||
S2 | 3474–3600 | 0.15 | 93.14 | 90.94 | 9.54 | 6.86 |
3600–3800 | 4.49 | 88.90 | 88.06 | 12.11 | 11.10 | |
3800–4000 | 14.17 | 83.73 | 84.92 | 14.02 | 16.27 | |
4000–4200 | 18.43 | 88.63 | 86.98 | 15.26 | 11.37 | |
4200–4485 | 11.50 | 89.07 | 86.55 | 18.02 | 10.93 | |
L8 | 3327–3600 | 1.22 | 63.38 | 84.83 | 13.50 | 36.62 |
3600–3800 | 4.57 | 64.73 | 85.81 | 5.37 | 35.27 | |
3800–4000 | 9.02 | 82.30 | 90.74 | 4.93 | 17.70 | |
4000–4200 | 13.08 | 89.65 | 91.84 | 5.85 | 10.35 | |
4200–4434 | 7.41 | 85.41 | 89.82 | 5.83 | 14.59 |
Aspect (°) | S2 | L8 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SCR | U | O | M | L | SCR | U | O | M | L | |
Unit: Percentage(%) | ||||||||||
Flat surface | 10.81 | 81.83 | 79.96 | 21.67 | 18.17 | 6.18 | 82.74 | 87.78 | 7.10 | 17.26 |
Shady slope | 6.79 | 84.95 | 85.13 | 14.26 | 12.05 | 10.53 | 82.20 | 89.41 | 5.68 | 17.80 |
Semishady slope | 10.84 | 77.95 | 81.86 | 14.38 | 22.05 | 6.54 | 85.41 | 84.74 | 16.57 | 14.59 |
Sunny slope | 7.56 | 71.93 | 78.83 | 19.37 | 28.07 | 3.96 | 73.72 | 74.03 | 25.69 | 26.28 |
Semisunny slope | 12.72 | 76.12 | 79.28 | 17.22 | 23.80 | 11.08 | 79.61 | 77.96 | 22.40 | 20.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ye, C.; Yang, R.; Li, K. Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region. Remote Sens. 2024, 16, 188. https://doi.org/10.3390/rs16010188
Zhang Y, Ye C, Yang R, Li K. Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region. Remote Sensing. 2024; 16(1):188. https://doi.org/10.3390/rs16010188
Chicago/Turabian StyleZhang, Yanli, Changqing Ye, Ruirui Yang, and Kegong Li. 2024. "Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region" Remote Sensing 16, no. 1: 188. https://doi.org/10.3390/rs16010188
APA StyleZhang, Y., Ye, C., Yang, R., & Li, K. (2024). Reconstructing Snow Cover under Clouds and Cloud Shadows by Combining Sentinel-2 and Landsat 8 Images in a Mountainous Region. Remote Sensing, 16(1), 188. https://doi.org/10.3390/rs16010188