The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis
Abstract
:1. Introduction
2. Study Areas and Data Source
2.1. Study Area
2.2. Remote Sensing Data
3. Methodology
3.1. Water Index
3.2. Threshold Determination
3.3. Accuracy Assessment
4. Results
4.1. Effects of Different Water Indices
4.1.1. Comparison of Different Water Indices in Landsat-9
4.1.2. Differences of Seven Water Indices in Landsat-8 and Landsat-9
4.1.3. Correlation among Various Water Indices
4.2. Separation of the Water Index
4.3. Comparison of Water Body Extraction
5. Discussion
5.1. Performance and Effectiveness of Various Water Indices
5.2. Spectral Response and Reflectance of Landsat-8 and Landsat-9 Data
5.3. Uncertainty and Perspective
6. Conclusions
- (1)
- Landsat-9 satellite data can be used for water body extraction effectively, with results consistent with those from Landsat-8. The selected eight water indices in this study are applicable on both Landsat-8 and Landsat-9 satellites.
- (2)
- The NDWI index shows a larger variability in accuracy compared to other indices when used on Landsat-8 and Landsat-9 imagery. Therefore, additional caution should be exercised when using the NDWI for water body analysis with both Landsat-8 and Landsat-9 satellites simultaneously.
- (3)
- For Landsat-8 and Landsat-9 imagery, ratio-based water indices tend to have more omission errors, while difference-based indices are more prone to commission errors. All water indices can enhance water information and suppress background noise. Among them, TCW and MBWI show less effective suppression of mountain shadows, while AWEInsh performs well in extracting fine rivers but poorly in suppressing building information, leading to more misclassification. Overall, ratio-based indices exhibit greater variability in overall accuracy, whereas difference-based indices demonstrate lower sensitivity to variations in the study area, showing smaller overall accuracy fluctuations and higher robustness.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Jordan, Y.C.; Ghulam, A.; Hartling, S. Traits of surface water pollution under climate and land use changes: A remote sensing and hydrological modeling approach. Earth-Sci. Rev. 2014, 128, 181–195. [Google Scholar] [CrossRef]
- Chang, N.-B.; Imen, S.; Vannah, B. Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective. Crit. Rev. Environ. Sci. Technol. 2015, 45, 101–166. [Google Scholar] [CrossRef]
- Sogno, P.; Klein, I.; Kuenzer, C. Remote Sensing of Surface Water Dynamics in the Context of Global Change—A Review. Remote Sens. 2022, 14, 2475. [Google Scholar] [CrossRef]
- Tran, T.N.D.; Do, S.K.; Nguyen, B.Q.; Tran, V.N.; Grodzka-Łukaszewska, M.; Sinicyn, G.; Lakshmi, V. Investigating the Future Flood and Drought Shifts in the Transboundary Srepok River Basin Using CMIP6 Projections. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7516–7529. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Amantai, N.; Xiong, J.; Wang, J. Responses of vegetation cover to hydro-climatic variations in Bosten Lake Watershed, NW China. Front. Plant Sci. 2024, 15, 1323445. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Hu, Z. An applicable and automatic method for earth surface water mapping based on multispectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102472. [Google Scholar] [CrossRef]
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Yang, X.; Chen, L. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J. Appl. Remote Sens. 2017, 11, 026016. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Li, G.; Liang, J.; Yu, D.; Aishan, T.; Zhang, F.; Yang, J.; Abulimiti, A.; Liu, J. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. CATENA 2019, 177, 189–201. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, W.; Huang, P.; He, G.; Guo, H. A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images. Remote Sens. 2021, 13, 4576. [Google Scholar] [CrossRef]
- Petrakis, R.E.; Soulard, C.E.; Waller, E.K.; Walker, J.J. Analysis of Surface Water Trends for the Conterminous United States Using MODIS Satellite Data, 2003–2019. Water Resour. Res. 2022, 58, e2021WR031399. [Google Scholar] [CrossRef]
- Li, L.; Skidmore, A.; Vrieling, A.; Wang, T. A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region. Hydrol. Earth Syst. Sci. 2019, 23, 3037–3056. [Google Scholar] [CrossRef]
- Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface water monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Showstack, R. Landsat 9 Satellite Continues Half-Century of Earth Observations: Eyes in the sky serve as a valuable tool for stewardship. BioScience 2022, 72, 226–232. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects. Earth’s Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Bijeesh, T.V.; Narasimhamurthy, K.N. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustain. Water Resour. Manag. 2020, 6, 68. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Zhang, G.; Lin, N.; Liu, Z. Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province. Remote Sens. 2023, 15, 1678. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Object-based water body extraction model using Sentinel-2 satellite imagery. Eur. J. Remote Sens. 2017, 50, 137–143. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Kung, H.-t.; Johnson, V.C.; Wang, J.; Nurmemet, I. Improved water extraction using Landsat TM/ETM+ images in Ebinur Lake, Xinjiang, China. Remote Sens. Appl. Soc. Environ. 2016, 4, 109–118. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, Y.; Gowda, P.H.; Dong, J.; Zhang, G.; Kakani, V.G.; Wagle, P.; Chen, L.; Flynn, K.C.; Jiang, W. Application of the water-related spectral reflectance indices: A review. Ecol. Indic. 2019, 98, 68–79. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wang, X.; Xie, S.; Zhang, X.; Chen, C.; Guo, H.; Du, J.; Duan, Z. A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 73–91. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for improved surface water monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Wang, R. Assessing methods of identifying open water bodies using Landsat 8 OLI imagery. Environ. Earth Sci. 2016, 75, 873. [Google Scholar] [CrossRef]
- Xu, H.; Ren, M.; Lin, M. Cross-comparison of Landsat-8 and Landsat-9 data: A three-level approach based on underfly images. GIScience Remote Sens. 2024, 61, 2318071. [Google Scholar] [CrossRef]
- Markham, B.; Jenstrom, D.; Masek, J.; Dabney, P.; Pedelty, J.; Barsi, J.; Montanaro, M. Landsat 9: Status and Plans; SPIE: Bellingham, WA, USA, 2016; Volume 9972. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bresciani, M.; Gege, P.; Giardino, C. Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2. Remote Sens. 2022, 14, 4596. [Google Scholar] [CrossRef]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Manfreda, S. Detection of surface water and floods with multispectral satellites. Remote Sens. 2022, 14, 6005. [Google Scholar] [CrossRef]
- Zhao, B.; Wu, J.; Han, X.; Tian, F.; Liu, M.; Chen, M.; Lin, J. An improved surface water extraction method by integrating multi-type priori information from remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103529. [Google Scholar]
- Ostu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–69. [Google Scholar]
- Rosser, J.F.; Leibovici, D.G.; Jackson, M.J. Rapid flood inundation mapping using social media, remote sensing and topographic data. Nat. Hazards 2017, 87, 103–120. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Wang, J. Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [Google Scholar] [CrossRef]
- Günen, M.A.; Atasever, U.H. Remote sensing and monitoring of water resources: A comparative study of different indices and thresholding methods. Sci. Total Environ. 2024, 926, 172117. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Xi, X.; Wang, C. A Comparative Study of Water Indices and Image Classification Algorithms for Mapping Inland Surface Water Bodies Using Landsat Imagery. Remote Sens. 2020, 12, 1611. [Google Scholar] [CrossRef]
- Haas, E.M.; Bartholomé, E.; Lambin, E.F.; Vanacker, V. Remotely sensed surface water extent as an indicator of short-term changes in ecohydrological processes in sub-Saharan Western Africa. Remote Sens. Environ. 2011, 115, 3436–3445. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Et Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Prakash, N.; Manconi, A.; Loew, S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef]
- Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G. The Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat; Purdue University: West Lafayette, IN, USA, 1976; p. 159. [Google Scholar]
- Xu, H.; Ren, M.; Yang, L. Evaluating the consistency of surface brightness, greenness, and wetness observations between Landsat-8 OLI and Landsat-9 OLI2 through underfly images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103546. [Google Scholar] [CrossRef]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the Simultaneous Underfly Event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Jiang, C.; Zhao, Y.; Li, H.; Lu, D.; Qin, K.; Chen, D.; Liu, Y.; Sun, Y. Comparison of lake area extraction algorithms in Qinghai Tibet plateau leveraging google earth engine and landsat-9 data. Remote Sens. 2022, 14, 4612. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, T.; Yu, D.; Teng, D.; Ge, X.; Zhang, Z.; Yang, X.; Wang, H.; Wu, G. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environ. Pollut. 2020, 266, 115412. [Google Scholar] [CrossRef] [PubMed]
- Sekertekin, A. A Survey on Global Thresholding Methods for Mapping Open Water Body Using Sentinel-2 Satellite Imagery and Normalized Difference Water Index. Arch. Comput. Methods Eng. 2021, 28, 1335–1347. [Google Scholar] [CrossRef]
- Mukherjee, A.; Kumar, A.A.; Ramachandran, P. Development of new index-based methodology for extraction of built-up area from landsat7 imagery: Comparison of performance with svm, ann, and existing indices. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1592–1603. [Google Scholar] [CrossRef]
- Li, C.; Shao, Z.; Zhang, L.; Huang, X.; Zhang, M. A comparative analysis of index-based methods for impervious surface mapping using multiseasonal Sentinel-2 satellite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3682–3694. [Google Scholar] [CrossRef]
No. | Names | Country | Climate | Water Type | Major Background Noise |
---|---|---|---|---|---|
1 | Mille Lacs Lake | The United States of America | Temperate continental climate | Lake | Vegetation |
2 | Lake Nipissing | Canada | Temperate continental climate | Lake | Vegetation and Artificial building |
3 | Tongling section of Yangtze River | China | Temperate monsoon climate | River | Paddy field and Mountain shadow Wetland |
4 | Lianhuan Lake | China | Temperate monsoon climate | Lake cluster | Wetland |
5 | Sai Lake | China | Temperate monsoon climate | River and Lake | Artificial building |
6 | Liangzi Lake | China | Temperate monsoon climate | Lake | Artificial building |
7 | Lake Wivenhoe | Australia | Subtropical monsoon and humid climate | Artificial reservoir | Mountain shadow and Artificial building |
No. | Test Site | Path/Row | Acquisition Date | Data Source |
---|---|---|---|---|
1 | Mille Lacs Lake | 028/028 | 2022/08/31 | Landsat-8 Collection 2 Level-2 |
027/028 | 2022/09/01 | Landsat-9 Collection 2 Level-2 | ||
2 | Lake Nipissing | 019/028 | 2023/09/04 | Landsat-8 Collection 2 Level-2 |
018 /028 | 2023/09/05 | Landsat-9 Collection 2 Level-2 | ||
3 | Tongling section of Yangtze River | 120/039 | 2022/11/08 | Landsat-8 Collection 2 Level-2 |
121/038 | 2022/11/07 | Landsat-9 Collection 2 Level-2 | ||
4 | Lianhuan Lake | 120/027 | 2022/11/08 | Landsat-8 Collection 2 Level-2 |
119/028 | 2022/11/09 | Landsat-9 Collection 2 Level-2 | ||
5 | Sai Lake | 122/039 | 2022/08/18 | Landsat-8 Collection 2 Level-2 |
121/040 | 2022/08/19 | Landsat-9 Collection 2 Level-2 | ||
6 | Liangzi Lake | 123/039 | 2022/05/05 | Landsat-8 Collection 2 Level-2 |
122/039 | 2022/05/06 | Landsat-9 Collection 2 Level-2 | ||
7 | Lake Wivenhoe | 089/079 | 2022/10/29 | Landsat-8 Collection 2 Level-2 |
090/079 | 2022/10/28 | Landsat-9 Collection 2 Level-2 |
Type | Water Index | Equation | Sensor | Reference |
---|---|---|---|---|
Ratio-based | NDWI | MSS | [31] | |
MNDWI | TM | [32] | ||
ANDWI | ETM+/OLI | [35] | ||
Difference-based | WI2015 | TM/ETM+/OLI | [34] | |
TCW | TM/ETM+ | [36] | ||
AWEIsh | TM | [28] | ||
AWEInsh | TM | [28] | ||
MBWI | OLI | [33] |
Site | Landsat-9 | Landsat-8 Minus Landsat-9 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDWI | MNDWI | ANDWI | WI2015 | TCW | AWEIsh | AWEInsh | MBWI | NDWI | MNDWI | ANDWI | WI2015 | TCW | AWEIsh | AWEInsh | MBWI | |||
Mille Lacs Lake | Kappa | 0.574 | 0.364 | 0.437 | 0.822 | 0.843 | 0.820 | 0.780 | 0.838 | −0.170 | 0.055 | −0.089 | 0.015 | −0.006 | 0.001 | 0.011 | 0.000 | |
OA | 0.825 | 0.660 | 0.718 | 0.937 | 0.944 | 0.937 | 0.924 | 0.942 | −0.132 | 0.048 | −0.073 | 0.005 | −0.002 | 0.000 | 0.005 | 0.000 | ||
PA | 0.834 | 0.561 | 0.645 | 0.980 | 0.986 | 0.986 | 0.986 | 0.980 | −0.226 | 0.074 | −0.108 | 0.003 | −0.003 | −0.003 | 0.011 | 0.000 | ||
UA | 0.925 | 0.976 | 0.970 | 0.939 | 0.942 | 0.933 | 0.918 | 0.945 | 0.048 | −0.012 | 0.011 | 0.003 | 0.000 | 0.003 | −0.002 | 0.000 | ||
MCC | 0.583 | 0.454 | 0.505 | 0.826 | 0.847 | 0.826 | 0.790 | 0.840 | −0.101 | 0.034 | −0.060 | 0.014 | −0.007 | −0.000 | 0.017 | 0.000 | ||
Lake Nipissing | Kappa | 0.362 | 0.344 | 0.310 | 0.580 | 0.581 | 0.561 | 0.519 | 0.581 | −0.129 | 0.071 | 0.041 | −0.011 | −0.020 | 0.000 | −0.016 | −0.016 | |
OA | 0.675 | 0.658 | 0.639 | 0.791 | 0.791 | 0.782 | 0.763 | 0.791 | −0.078 | 0.039 | 0.024 | −0.006 | −0.010 | 0.000 | −0.007 | −0.008 | ||
PA | 0.545 | 0.381 | 0.334 | 0.793 | 0.789 | 0.797 | 0.820 | 0.782 | −0.279 | 0.069 | 0.066 | −0.007 | −0.024 | −0.004 | 0.019 | −0.006 | ||
UA | 0.784 | 0.957 | 0.981 | 0.813 | 0.816 | 0.797 | 0.758 | 0.820 | 0.156 | 0.011 | −0.045 | −0.004 | −0.001 | 0.003 | −0.017 | −0.008 | ||
MCC | 0.382 | 0.439 | 0.421 | 0.581 | 0.581 | 0.561 | 0.521 | 0.582 | −0.040 | 0.060 | 0.015 | −0.011 | −0.019 | 0.000 | −0.013 | −0.016 | ||
Tongling section of Yangtze River | Kappa | 0.731 | 0.701 | 0.706 | 0.674 | 0.618 | 0.667 | 0.607 | 0.609 | −0.030 | −0.007 | −0.023 | 0.002 | −0.020 | −0.014 | −0.038 | −0.014 | |
OA | 0.867 | 0.851 | 0.854 | 0.836 | 0.806 | 0.832 | 0.801 | 0.801 | −0.014 | −0.003 | −0.011 | 0.001 | −0.010 | −0.007 | −0.019 | −0.007 | ||
PA | 0.804 | 0.827 | 0.814 | 0.918 | 0.954 | 0.922 | 0.914 | 0.960 | −0.070 | −0.006 | −0.031 | −0.009 | −0.015 | −0.011 | 0.008 | −0.019 | ||
UA | 0.903 | 0.852 | 0.867 | 0.775 | 0.723 | 0.768 | 0.731 | 0.715 | 0.038 | −0.001 | 0.004 | 0.006 | −0.006 | −0.005 | −0.026 | −0.001 | ||
MCC | 0.735 | 0.701 | 0.707 | 0.685 | 0.647 | 0.679 | 0.624 | 0.642 | −0.018 | −0.006 | −0.021 | −0.000 | −0.022 | −0.015 | −0.030 | −0.019 | ||
Lianhuan Lake | Kappa | 0.823 | 0.835 | 0.838 | 0.832 | 0.757 | 0.844 | 0.844 | 0.772 | 0.061 | 0.003 | 0.011 | 0.018 | 0.015 | 0.014 | 0.003 | 0.017 | |
OA | 0.912 | 0.918 | 0.919 | 0.916 | 0.878 | 0.922 | 0.922 | 0.886 | 0.030 | 0.001 | 0.006 | 0.009 | 0.008 | 0.007 | 0.001 | 0.008 | ||
PA | 0.834 | 0.863 | 0.857 | 0.968 | 0.974 | 0.971 | 0.968 | 0.974 | 0.151 | 0.009 | 0.023 | 0.003 | 0.000 | 0.000 | 0.009 | 0.003 | ||
UA | 0.986 | 0.967 | 0.977 | 0.876 | 0.817 | 0.883 | 0.885 | 0.827 | −0.080 | −0.006 | −0.012 | 0.012 | 0.010 | 0.012 | −0.003 | 0.011 | ||
MCC | 0.833 | 0.840 | 0.844 | 0.837 | 0.771 | 0.848 | 0.847 | 0.784 | 0.055 | 0.002 | 0.009 | 0.016 | 0.013 | 0.013 | 0.004 | 0.016 | ||
Sai Lake | Kappa | 0.668 | 0.681 | 0.674 | 0.715 | 0.726 | 0.670 | 0.580 | 0.735 | −0.016 | 0.020 | 0.022 | −0.012 | −0.018 | 0.006 | 0.012 | −0.034 | |
OA | 0.831 | 0.838 | 0.834 | 0.859 | 0.864 | 0.838 | 0.797 | 0.868 | −0.007 | 0.010 | 0.012 | −0.006 | −0.008 | 0.002 | 0.005 | −0.016 | ||
PA | 0.743 | 0.744 | 0.736 | 0.844 | 0.841 | 0.848 | 0.872 | 0.834 | 0.004 | 0.020 | 0.030 | −0.009 | 0.007 | 0.000 | −0.008 | 0.004 | ||
UA | 0.951 | 0.963 | 0.965 | 0.903 | 0.914 | 0.865 | 0.793 | 0.927 | −0.020 | −0.001 | −0.009 | −0.004 | −0.020 | 0.004 | 0.011 | −0.032 | ||
MCC | 0.689 | 0.704 | 0.699 | 0.717 | 0.729 | 0.671 | 0.584 | 0.740 | −0.020 | 0.016 | 0.015 | −0.012 | −0.019 | 0.005 | 0.010 | −0.037 | ||
Liangzi Lake | Kappa | 0.863 | 0.885 | 0.888 | 0.782 | 0.732 | 0.770 | 0.736 | 0.767 | 0.025 | −0.041 | −0.029 | −0.019 | 0.022 | −0.010 | 0.032 | −0.013 | |
OA | 0.933 | 0.943 | 0.945 | 0.890 | 0.864 | 0.884 | 0.866 | 0.882 | 0.012 | −0.020 | −0.015 | −0.010 | 0.011 | −0.005 | 0.017 | −0.007 | ||
PA | 0.874 | 0.936 | 0.914 | 0.988 | 0.986 | 0.986 | 0.988 | 0.984 | 0.046 | 0.017 | 0.026 | −0.009 | 0.000 | −0.007 | −0.017 | −0.002 | ||
UA | 0.972 | 0.936 | 0.959 | 0.806 | 0.771 | 0.798 | 0.772 | 0.797 | −0.018 | −0.055 | −0.053 | −0.009 | 0.015 | −0.003 | 0.033 | −0.009 | ||
MCC | 0.866 | 0.885 | 0.889 | 0.798 | 0.755 | 0.787 | 0.759 | 0.784 | 0.022 | −0.038 | −0.029 | −0.019 | 0.018 | −0.011 | 0.022 | −0.012 | ||
Lake Wivenhoe | Kappa | 0.808 | 0.798 | 0.795 | 0.857 | 0.860 | 0.836 | 0.802 | 0.866 | −0.043 | −0.056 | −0.053 | −0.003 | −0.006 | −0.002 | −0.026 | −0.012 | |
OA | 0.909 | 0.905 | 0.904 | 0.930 | 0.932 | 0.920 | 0.902 | 0.935 | −0.019 | −0.025 | −0.024 | −0.001 | −0.003 | −0.002 | −0.013 | −0.006 | ||
PA | 0.793 | 0.718 | 0.775 | 0.929 | 0.929 | 0.929 | 0.954 | 0.921 | −0.050 | −0.061 | −0.057 | −0.004 | 0.000 | 0.007 | −0.015 | 0.000 | ||
UA | 0.987 | 0.99 | 0.991 | 0.906 | 0.909 | 0.884 | 0.834 | 0.921 | 0.003 | −0.001 | −0.001 | 0.000 | −0.006 | −0.008 | −0.015 | −0.013 | ||
MCC | 0.821 | 0.813 | 0.810 | 0.857 | 0.860 | 0.837 | 0.808 | 0.866 | −0.036 | −0.047 | −0.044 | −0.003 | −0.006 | −0.002 | −0.027 | −0.012 |
Band | Acronym | Spatial Resolution | Landsat-8 OLI | Landsat-9 OLI2 | ||
---|---|---|---|---|---|---|
Spectral Range | Band Center | Spectral Range | Band Center | |||
Coastal aerosol | B1 | 30 m | 433–453 | 443 | 435–451 | 443 |
Blue (B) | B2 | 30 m | 450–515 | 483 | 452–512 | 482 |
Green (G) | B3 | 30 m | 525–600 | 561 | 533–590 | 562 |
Red (R) | B4 | 30 m | 630–680 | 655 | 636–673 | 655 |
Near-infrared (NIR) | B5 | 30 m | 845–885 | 865 | 851–879 | 866 |
Shortwave infrared 1 (SWIR1) | B6 | 30 m | 1560–1660 | 1610 | 1566–1651 | 1610 |
Shortwave infrared 2 (SWIR2) | B7 | 30 m | 2100–2300 | 2200 | 2107–2294 | 2201 |
Panchromatic | B8 | 15 m | 500–680 | 591 | 503–676 | 590 |
Cirrus | B9 | 30 m | 1360–1390 | 1373 | 1363–1384 | 1374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, Y.; Wang, J.; Zhang, Y.; Xu, Y.; Yang, O.; Zhang, R.; Wang, J.; Wang, Z.; Lu, F.; et al. The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis. Remote Sens. 2024, 16, 1984. https://doi.org/10.3390/rs16111984
Chen J, Wang Y, Wang J, Zhang Y, Xu Y, Yang O, Zhang R, Wang J, Wang Z, Lu F, et al. The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis. Remote Sensing. 2024; 16(11):1984. https://doi.org/10.3390/rs16111984
Chicago/Turabian StyleChen, Jie, Yankun Wang, Jingzhe Wang, Yinghui Zhang, Yue Xu, Ou Yang, Rui Zhang, Jing Wang, Zhensheng Wang, Feidong Lu, and et al. 2024. "The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis" Remote Sensing 16, no. 11: 1984. https://doi.org/10.3390/rs16111984
APA StyleChen, J., Wang, Y., Wang, J., Zhang, Y., Xu, Y., Yang, O., Zhang, R., Wang, J., Wang, Z., Lu, F., & Hu, Z. (2024). The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis. Remote Sensing, 16(11), 1984. https://doi.org/10.3390/rs16111984