Near-Surface Dispersion and Current Observations Using Dye, Drifters, and HF Radar in Coastal Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Dye Observations
2.3. Surface Current Observations
3. Results
3.1. Surface Current Observations
3.2. Horizontal Tracer Behaviors
3.3. Vertical Dye Distribution
4. Discussion
4.1. Vertical Shear Induced by Near-Surface Dynamics
4.2. Horizontal Dispersion and Vertical Mixing of Tracers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Du, Y.; Dong, X.; Jiang, X.; Zhang, Y.; Zhu, D.; Sun, Q.; Wang, Z.; Niu, X.; Chen, W.; Zhu, C.; et al. Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Prog. Oceanogr. 2021, 193, 102531. [Google Scholar] [CrossRef]
- Röhrs, J.; Sutherland, G.; Jeans, G.; Bedington, M.; Sperrevik, A.K.; Dagestad, K.-F.; Gusdal, Y.; Mauritzen, C.; Dale, A.; LaCasce, J.H. Surface currents in operational oceanography: Key applications, mechanisms, and methods. J. Oper. Oceanogr. 2023, 16, 60–88. [Google Scholar] [CrossRef]
- Aijaz, S.; Brassington, G.B.; Divakaran, P.; Régnier, C.; Drévillon, M.; Maksymczuk, J.; Peterson, K.A. Verification and intercomparison of global ocean Eulerian near-surface currents. Ocean Model. 2023, 186, 102241. [Google Scholar] [CrossRef]
- Shen, Y.-T.; Lai, J.-W.; Leu, L.-G.; Lu, Y.-C.; Chen, J.-M.; Shao, H.-J.; Chen, H.-W.; Chang, K.-T.; Terng, C.-T.; Chang, Y.-C.; et al. Applications of ocean currents data from high-frequency radars and current profilers to search and rescue missions around Taiwan. J. Oper. Oceanogr. 2019, 12, S126–S136. [Google Scholar] [CrossRef]
- Liu, Y.; Harvey, C.M.; Hamlyn, F.E.; Liu, C. Bayesian estimation and reconstruction of marine surface contaminant dispersion. Sci. Total Environ. 2024, 907, 167973. [Google Scholar] [CrossRef]
- Aravind, H.M.; Huntley, H.S.; Kirwan, A.D., Jr.; Allshouse, M.R. Drifter Deployment Strategies to Determine Lagrangian Surface Convergence in Submesoscale Flows. J. Atmos. Ocean. Technol. 2024, 41, 95–112. [Google Scholar] [CrossRef]
- Davis, R.E. Lagrangian ocean studies. Annu. Rev. Fluid Mech. 1991, 23, 43–64. [Google Scholar] [CrossRef]
- Peeters, F.; Wüest, A.; Piepke, G.; Imboden, D.M. Horizontal mixing in lakes. J. Geophys. Res. Ocean. 1996, 101, 18361–18375. [Google Scholar] [CrossRef]
- Choi, J.; Troy, C.; Hawley, N.; McCormick, M.; Wells, M. Lateral dispersion of dye and drifters in the center of a very large lake. Limnol. Oceanogr. 2020, 65, 336–348. [Google Scholar] [CrossRef]
- Subbaraya, S.; Breitenmoser, A.; Molchanov, A.; Muller, J.; Oberg, C.; Caron, D.A.; Sukhatme, G.S. Circling the seas: Design of Lagrangian drifters for ocean monitoring. IEEE Robot. Autom. Mag. 2016, 23, 42–53. [Google Scholar] [CrossRef]
- Berti, S.; Dos Santos, F.A.; Lacorata, G.; Vulpiani, A. Lagrangian drifter dispersion in the southwestern Atlantic Ocean. J. Phys. Oceanogr. 2011, 41, 1659–1672. [Google Scholar] [CrossRef]
- Mantovanelli, A.; Heron, M.L.; Heron, S.F.; Steinberg, C.R. Relative dispersion of surface drifters in a barrier reef region. J. Geophys. Res. Ocean. 2012, 117, C11016. [Google Scholar] [CrossRef]
- Bertin, S.; Sentchev, A.; Alekseenko, E. Fusion of Lagrangian drifter data and numerical model outputs for improved assessment of turbulent dispersion. EGUsphere 2024, preprint. [Google Scholar] [CrossRef]
- Van Sebille, E.; van Leeuwen, P.J.; Biastoch, A.; Barron, C.N.; De Ruijter, W.P.M. Lagrangian validation of numerical drifter trajectories using drifting buoys: Application to the Agulhas system. Ocean. Model. 2009, 29, 269–276. [Google Scholar] [CrossRef]
- Muscarella, P.; Carrier, M.J.; Ngodock, H.; Smith, S.; Lipphardt, B.L., Jr.; Kirwan, A.D., Jr.; Huntley, H.S. Do assimilated drifter velocities improve Lagrangian predictability in an operational ocean model? Mon. Weather. Rev. 2015, 143, 1822–1832. [Google Scholar] [CrossRef]
- Choi, J.M.; Kim, W.; Hong, T.T.M.; Park, Y.G. Derivation and evaluation of satellite-based surface current. Front. Mar. Sci. 2021, 8, 695780. [Google Scholar] [CrossRef]
- Hong, T.T.M.; Park, Y.G.; Choi, J.M. Divergence Observation in a Mesoscale Eddy during Chla Bloom Revealed in Submesoscale Satellite Currents. Remote Sens. 2023, 15, 995. [Google Scholar] [CrossRef]
- Dohan, K. Ocean surface currents from satellite data. J. Geophys. Res. Ocean. 2017, 122, 2647–2651. [Google Scholar] [CrossRef]
- Parks, A.B.; Shay, L.K.; Johns, W.E.; Martinez-Pedraja, J.; Gurgel, K.W. HF radar observations of small-scale surface current variability in the Straits of Florida. J. Geophys. Res. Ocean. 2009, 114, C08002. [Google Scholar] [CrossRef]
- Ledwell, J.R.; Watson, A.J.; Law, C.S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 1993, 364, 701–703. [Google Scholar] [CrossRef]
- Sundermeyer, M.A.; Price, J.F. Lateral mixing and the North Atlantic Tracer Release Experiment: Observations and numerical simulations of Lagrangian particles and a passive tracer. J. Geophys. Res. Ocean. 1998, 103, 21481–21497. [Google Scholar] [CrossRef]
- Runkel, R.L. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage. Water Resour. Res. 2015, 51, 6125–6142. [Google Scholar] [CrossRef]
- Giraldi, D.; Vitturi, M.D.M.; Zaramella, M.; Marion, A.; Iannelli, R. Hydrodynamics of vertical subsurface flow constructed wetlands: Tracer tests with rhodamine WT and numerical modelling. Ecol. Eng. 2009, 35, 265–273. [Google Scholar] [CrossRef]
- Stride, B.; Abolfathi, S.; Bending, G.D.; Pearson, J. Quantifying microplastic dispersion due to density effects. J. Hazard. Mater. 2024, 466, 133440. [Google Scholar] [CrossRef] [PubMed]
- Upstill-Goddard, R.C.; Suijlen, J.M.; Malin, G.; Nightingale, P.D. The use of photolytic rhodamines WT and sulpho G as conservative tracers of dispersion in surface waters. Limnol. Oceanogr. 2001, 46, 927–934. [Google Scholar] [CrossRef]
- Geyer, N.L.; Balwada, D.; Simons, E.; Speer, K.; Huettel, M. Drifter and dye tracks reveal dispersal processes that can affect phytoplankton distributions in shallow estuarine environments. Estuar. Coast. Shelf Sci. 2022, 269, 107811. [Google Scholar] [CrossRef]
- Richardson, S.D.; Willson, C.S.; Rusch, K.A. Use of rhodamine water tracer in the marshland upwelling system. Groundwater 2004, 42, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.L.; Lawrence, G.A.; Hamblin, P.F. Horizontal dispersion in the surface layer of a long narrow lake. J. Environ. Eng. Sci. 2004, 3, 413–417. [Google Scholar] [CrossRef]
- Mirfenderesk, H.; Hughes, L.; Tomlinson, R. Verification of a three-dimensional advection dispersion model using dye release experiment. In Proceedings of the 16th Australasian Fluid Mechanics Conference, Crown Plaza, Australia, 2–7 December 2007; pp. 233–240. [Google Scholar]
- Johansen, K.; Dunne, A.F.; Tu, Y.H.; Almashharawi, S.; Jones, B.H.; McCabe, M.F. Dye tracing and concentration mapping in coastal waters using unmanned aerial vehicles. Sci. Rep. 2022, 12, 1141. [Google Scholar] [CrossRef]
- Burdziakowski, P.; Specht, C.; Dabrowski, P.S.; Specht, M.; Lewicka, O.; Makar, A. Using UAV photogrammetry to analyse changes in the coastal zone based on the sopot tombolo (Salient) measurement project. Sensors 2020, 20, 4000. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, M.; Mutanga, O.; Chimonyo, V.G.P.; Clulow, A.D.; Shoko, C.; Mazvimavi, D.; Dube, T.; Mabhaudhi, T. Application of drone technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and opportunities in the global south. Drones 2021, 5, 84, Erratum in Drones 2022, 6, 131. [Google Scholar] [CrossRef]
- Bressan, A.; Constantin, A. The deflection angle of surface ocean currents from the wind direction. J. Geophys. Res. Ocean. 2019, 124, 7412–7420. [Google Scholar] [CrossRef]
- Constantin, A. Frictional effects in wind-driven ocean currents. Geophys. Astrophys. Fluid Dyn. 2021, 115, 1–14. [Google Scholar] [CrossRef]
- Tamtare, T.; Dumont, D.; Chavanne, C. The Stokes drift in ocean surface drift prediction. J. Oper. Oceanogr. 2022, 15, 156–168. [Google Scholar] [CrossRef]
- Kim, K.; Kim, E.; Choi, J.M.; Shin, J.; Kim, W.; Lee, K.J.; Son, Y.B.; Ryu, J.H. Simulation approach for the tracing the marine pollution using multi-remote sensing data. Korean J. Remote Sens. 2020, 36, 249–261. [Google Scholar]
- Wu, J. Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr. 1980, 10, 727–740. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, K.S. Atmospheric correction problems with multi-temporal high spatial resolution images from different satellite sensors. Korean J. Remote Sens. 2015, 31, 321–330. [Google Scholar] [CrossRef]
- Dewi, E.K.; Trisakti, B. Comparing atmospheric correction methods for Landsat OLI data. Int. J. Remote Sens. Earth Sci. (IJReSES) 2017, 13, 105–120. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Wu, Z.; Wang, S.; Sun, H.; Senthilnath, J.; Wang, J.; Bryant, C.R.; Fu, Y. Modified red blue vegetation index for chlorophyll estimation and yield prediction of maize from visible images captured by UAV. Sensors 2020, 20, 5055. [Google Scholar] [CrossRef]
- Shaheen, H.; Agarwal, S.; Ranjan, P. MinMaxScaler Binary PSO for Feature Selection. In First International Conference on Sustainable Technologies for Computational Intelligence; Luhach, A., Kosa, J., Poonia, R., Gao, X.Z., Singh, D., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 1045. [Google Scholar] [CrossRef]
- Jang, W.; Park, Y.; Pyo, J.; Park, S.; Kim, J.; Kim, J.H.; Cho, K.H.; Shin, J.-K.; Kim, S. Optimal band selection for airborne hyperspectral imagery to retrieve a wide range of cyanobacterial pigment concentration using a data-driven approach. Remote Sens. 2022, 14, 1754. [Google Scholar] [CrossRef]
- Rubio, A.; Mader, J.; Corgnati, L.; Mantovani, C.; Griffa, A.; Novellino, A.; Quentin, C.; Wyatt, L.; Schulz-Stellenfleth, J.; Horstmann, J.; et al. HF radar activity in European coastal seas: Next steps toward a pan-European HF radar network. Front. Mar. Sci. 2017, 4, 8. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cornuelle, B.D.; Terrill, E.J. Anisotropic response of surface currents to the wind in a coastal region. J. Phys. Oceanogr. 2009, 39, 1512–1533. [Google Scholar] [CrossRef]
- Stewart, R.H.; Joy, J.W. HF radio measurements of surface currents. In Deep Sea Research and Oceanographic Abstracts; Elsevier: Amsterdam, The Netherlands, 1974; Volume 21, pp. 1039–1049. [Google Scholar]
- Greene, C.A.; Erofeeva, S.; Padman, L.; Howard, S.L.; Sutterley, T.; Egbert, G. Tide Model Driver for MATLAB. J. Open Source Softw. 2024, 9, 6018. [Google Scholar] [CrossRef]
- Zill, D.G. Advance Engineering Mathematics, 3rd ed.; Jones & Bartlett Learning: Burlington, MA, USA, 2020; pp. 418–452. [Google Scholar]
- Smith, L.I. A Tutorial on Principal Components Analysis; University of Otago: Otago, New Zealand, 2002; pp. 12–20. [Google Scholar]
- Laxague, N.J.M.; Özgökmen, T.M.; Haus, B.K.; Novelli, G.; Shcherbina, A.; Sutherland, P.; Guigand, C.M.; Lund, B.; Mehta, S.; Alday, M.; et al. Observations of near-surface current shear help describe oceanic oil and plastic transport. Geophys. Res. Lett. 2018, 45, 245–249. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, J.M. Measurement of Near-Surface Current Shear Using a Lagrangian Platform and Its Implication on Microplastic Dispersion. J. Mar. Sci. Eng. 2023, 11, 1716. [Google Scholar] [CrossRef]
- Romero, L.; Ohlmann, J.C.; Pallàs-Sanz, E.; Statom, N.M.; Pérez-Brunius, P.; Maritorena, S. Coincident observations of dye and drifter relative dispersion over the inner shelf. J. Phys. Oceanogr. 2019, 49, 2447–2468. [Google Scholar] [CrossRef]
- Clarke, A.J.; Van Gorder, S. The relationship of near-surface flow, stokes drift and the wind stress. J. Geophys. Res. Ocean. 2018, 123, 4680–4692. [Google Scholar] [CrossRef]
- Pedlosky, J. An inertial model of the interaction of Ekman layers and planetary islands. J. Phys. Oceanogr. 2013, 43, 1398–1406. [Google Scholar] [CrossRef]
- Tamura, H.; Miyazawa, Y.; Oey, L.Y. The Stokes drift and wave induced-mass flux in the North Pacific. J. Geophys. Res. Ocean. 2012, 117, C08021. [Google Scholar] [CrossRef]
- Okubo, A. Oceanic diffusion diagrams. In Deep Sea Research and Oceanographic Abstracts; Elsevier: Amsterdam, The Netherlands, 1971; Volume 18, pp. 789–802. [Google Scholar]
- McWilliams, J.C. Submesoscale currents in the ocean. Proc. R. Soc. A Math. Phys. Eng. Sci. 2016, 472, 20160117. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.F. I. Some measurements of atmospheric turbulence. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1921, 221, 1–28. [Google Scholar]
- Fischer, H.B. Mixing in Inland and Coastal Waters; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Saffman, P.G. The effect of wind shear on horizontal spread from an instantaneous ground source. Q. J. R. Meteorol. Soc. 1962, 88, 382–393. [Google Scholar] [CrossRef]
- Shee, A.; Sil, S. Estimations of vertical diffusivity and applications on a mixed layer budget analysis of the Bay of Bengal using Argo data. J. Mar. Syst. 2023, 239, 103857. [Google Scholar] [CrossRef]
- Gregg, M.C. Diapycnal mixing in the thermocline: A review. J. Geophys. Res. Ocean. 1987, 92, 5249–5286. [Google Scholar]
- Ledwell, J.R.; Watson, A.J.; Law, C.S. Mixing of a tracer in the pycnocline. J. Geophys. Res. Ocean. 1998, 103, 21499–21529. [Google Scholar] [CrossRef]
- Ledwell, J.R.; St. Laurent, L.C.; Girton, J.B.; Toole, J.M. Diapycnal mixing in the Antarctic circumpolar current. J. Phys. Oceanogr. 2011, 41, 241–246. [Google Scholar] [CrossRef]
- Yang, P.; Xing, Z.; Fong, D.A.; Monismith, S.G.; Tan, K.M.; Lo, E.Y. Observations of vertical eddy diffusivities in a shallow tropical reservoir. J. Hydro-Environ. Res. 2015, 9, 441–451. [Google Scholar] [CrossRef]
- Bouffard, D.; Boegman, L.; Rao, Y.R. Poincaré wave–induced mixing in a large lake. Limnol. Oceanogr. 2012, 57, 1201–1216. [Google Scholar] [CrossRef]
- Masunaga, E.; Itoh, S.; Kitamura, T. Vertical mixing and oxygen flux caused by daily sea breezes in a shallow stratified lake. Limnology 2023, 24, 95–109. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Wang, X.H.; Fredj, E. A 3D numerical model to Track Marine Plastic Debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Mar. Pollut. Bull. 2019, 141, 256–272. [Google Scholar] [CrossRef] [PubMed]
# | Time | Source | σx (m) | σy (m) | σma (m) | σmi (m) | Angle (°) |
---|---|---|---|---|---|---|---|
1 | 09:10 | drone | 14.92 | 24.26 | 7.93 | 27.35 | −32.89 |
2 | 09:26 | drone | 26.34 | 23.71 | 13.94 | 32.58 | −52.10 |
3 | 09:27 | drone | 26.25 | 24.81 | 14.36 | 33.15 | −49.56 |
4 | 09:28 | drone | 26.64 | 25.22 | 14.85 | 33.55 | −49.52 |
5 | 09:29 | drone | 26.56 | 25.84 | 15.04 | 33.86 | −47.99 |
6 | 09:30 | drone | 26.40 | 26.43 | 15.28 | 34.09 | −46.34 |
7 | 09:31 | drone | 27.28 | 26.83 | 15.64 | 34.93 | −47.37 |
8 | 09:32 | drone | 27.16 | 27.02 | 15.61 | 34.98 | −46.70 |
9 | 09:35 | drone | 27.22 | 28.04 | 16.45 | 35.45 | −44.54 |
10 | 09:38 | drone | 27.99 | 29.02 | 17.38 | 36.38 | −44.06 |
11 | 09:39 | drone | 28.03 | 29.28 | 17.49 | 36.56 | −43.58 |
12 | 10:10 | satellite | 41.17 | 43.58 | 25.78 | 54.12 | 40.91 |
13 | 10:34 | drone | 52.03 | 46.53 | 26.73 | 64.48 | 52.97 |
14 | 10:38 | drone | 52.99 | 49.80 | 26.96 | 67.53 | 42.91 |
15 | 10:41 | drone | 53.47 | 52.20 | 26.99 | 69.68 | 45.09 |
16 | 11:28 | drone | 86.58 | 67.35 | 31.23 | 105.15 | 52.62 |
17 | 11:44 | satellite | 61.26 | 67.25 | 29.25 | 86.13 | 42.08 |
18 | 12:40 | ship | 115.39 | 91.61 | 56.17 | 136.20 | 29.50 |
19 | 13:32 | drone | 120.63 | 211.82 | 81.69 | 229.66 | 7.26 |
20 | 16:02 | ship | 193.80 | 284.35 | 153.94 | 307.76 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Tran, H.T.M.; Song, K.-M.; Son, Y.B.; Park, Y.-G.; Ryu, J.-H.; Kwak, G.-H.; Choi, J.M. Near-Surface Dispersion and Current Observations Using Dye, Drifters, and HF Radar in Coastal Waters. Remote Sens. 2024, 16, 1985. https://doi.org/10.3390/rs16111985
Kim K, Tran HTM, Song K-M, Son YB, Park Y-G, Ryu J-H, Kwak G-H, Choi JM. Near-Surface Dispersion and Current Observations Using Dye, Drifters, and HF Radar in Coastal Waters. Remote Sensing. 2024; 16(11):1985. https://doi.org/10.3390/rs16111985
Chicago/Turabian StyleKim, Keunyong, Hong Thi My Tran, Kyu-Min Song, Young Baek Son, Young-Gyu Park, Joo-Hyung Ryu, Geun-Ho Kwak, and Jun Myoung Choi. 2024. "Near-Surface Dispersion and Current Observations Using Dye, Drifters, and HF Radar in Coastal Waters" Remote Sensing 16, no. 11: 1985. https://doi.org/10.3390/rs16111985
APA StyleKim, K., Tran, H. T. M., Song, K. -M., Son, Y. B., Park, Y. -G., Ryu, J. -H., Kwak, G. -H., & Choi, J. M. (2024). Near-Surface Dispersion and Current Observations Using Dye, Drifters, and HF Radar in Coastal Waters. Remote Sensing, 16(11), 1985. https://doi.org/10.3390/rs16111985