Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias
Abstract
:1. Introduction
- (1)
- The entropy-based and gray-based multiclass indicators could effectively recognize the multiclass complexity features of remote sensing images and quantify geocomplexity information, providing a quantitative basis for selecting training samples.
- (2)
- An optimal sampling strategy was proposed to obtain training samples that were preferably representative of the population. Compared to the simple random sampling method, the optimal sampling method could improve the performance of the multiclass semantic segmentation and adeptly select samples with rich feature information while simultaneously reducing the sampling bias.
- (3)
- The optimal sampling method was effective and applicable to representative machine learning algorithms, particularly for those involving deep learning.
2. Methods
2.1. Definition of Geocomplexity Statistical Indicators and Complexity Quantification
- (a)
- Entropy-based indicator and complexity quantification
- (b)
- Gray-based indicator and complexity quantification
2.2. Multiclass Optimal Sampling Method
2.3. Model Evaluation
2.4. Evaluation and Prediction
- (a)
- Pixel Accuracy
- (b)
- Mean Intersection over Union
3. Experiment and Result
3.1. Experiment
3.1.1. Dataset
3.1.2. Experimental Detail
3.1.3. Loss Function
3.2. Result
3.2.1. Quantification of Geocomplexity
3.2.2. Complexity Score Distribution of Training Samples
3.2.3. Land Cover Segmentations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision–ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Bayoudh, K. A Survey of Multimodal Hybrid Deep Learning for Computer Vision: Architectures, Applications, Trends, and Challenges. Infin. Fusion 2024, 105, 102217. [Google Scholar] [CrossRef]
- Aizenstein, H.; Moore, R.C.; Vahia, I.; Ciarleglio, A. Deep Learning and Geriatric Mental Health. Am. J. Geriatr. Psychiatry 2023, 32, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wang, T.; Zheng, Y.; Zhang, W.; Yun, Y.-H. Deep Learning in Food Authenticity: Recent Advances and Future Trends. Trends Food Sci. Technol. 2024, 144, 104344. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert. Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Blaschke, T.; Lang, S.; Lorup, E.J.; Strobl, J.; Zeil, P. Object-Oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications. Environ. Inf. Plan. Politics Publ. 2000, 2, 555–570. [Google Scholar]
- Yuan, X.; Sarma, V. Automatic Urban Water-Body Detection and Segmentation From Sparse ALSM Data via Spatially Constrained Model-Driven Clustering. IEEE Geosci. Remote Sens. Lett. 2011, 8, 73–77. [Google Scholar] [CrossRef]
- Yang, S.; Chen, Q.; Yuan, X.; Liu, X. Adaptive Coherency Matrix Estimation for Polarimetric SAR Imagery Based on Local Heterogeneity Coefficients. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6732–6745. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Jadhav, J.K.; Singh, R.P. Automatic Semantic Segmentation and Classification of Remote Sensing Data for Agriculture. Math. Models Eng. 2018, 4, 112–137. [Google Scholar] [CrossRef]
- Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS Benchmark on Urban Object Detection and 3D Building Reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [Google Scholar] [CrossRef]
- Managi, S.; Wang, J.; Zhang, L. Research Progress on Monitoring and Assessment of Forestry Area for Improving Forest Management in China. For. Econ. Rev. 2019, 1, 57–70. [Google Scholar] [CrossRef]
- Li, M. Dynamic Monitoring Algorithm of Natural Resources in Scenic Spots Based on MODIS Remote Sensing Technology. Earth Sci. Res. J. 2021, 25, 57–64. [Google Scholar] [CrossRef]
- Balsamo, G.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Blyth, E.; Bousserez, N.; Boussetta, S.; Brown, A.; et al. Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sens. 2018, 10, 2038. [Google Scholar] [CrossRef]
- Fisher, R.A.; Koven, C.D. Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. J. Adv. Model. Earth Syst. 2020, 12, e2018MS001453. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Monthly Analysis of Wetlands Dynamics Using Remote Sensing Data. Int. J. Geo-Inf. 2018, 7, 411. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing Land Surface Anisotropic Reflectance over Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef]
- Mu, X.; Hu, M.; Song, W.; Ruan, G.; Ge, Y.; Wang, J.; Huang, S.; Yan, G. Evaluation of Sampling Methods for Validation of Remotely Sensed Fractional Vegetation Cover. Remote Sens. 2015, 7, 16164–16182. [Google Scholar] [CrossRef]
- Feng, W.; Boukir, S.; Huang, W. Margin-Based Random Forest for Imbalanced Land Cover Classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Yokohama, Japan, 2019; pp. 3085–3088. [Google Scholar]
- Yang, Y.; Sun, X.; Diao, W.; Yin, D.; Yang, Z.; Li, X. Statistical Sample Selection and Multivariate Knowledge Mining for Lightweight Detectors in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5626414. [Google Scholar] [CrossRef]
- Suh, N.P. A Theory of Complexity, Periodicity and the Design Axioms. Res. Eng. Des. 1999, 11, 116–132. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Schellnhuber, H.J.; Dube, O.P.; Dutreuil, S.; Lenton, T.M.; Lubchenco, J. The Emergence and Evolution of Earth System Science. Nat. Rev. Earth Environ. 2020, 1, 54–63. [Google Scholar] [CrossRef]
- Cheng, Q. Quantitative Simulation and Prediction of Extreme Geological Events. Sci. China Earth Sci. 2022, 65, 1012–1029. [Google Scholar] [CrossRef]
- Lovejoy, S. The 2021 “Complex Systems” Nobel Prize: The Climate, with and without Geocomplexity. AGU Adv. 2022, 3, e2021AV000640. [Google Scholar] [CrossRef]
- Ge, Y.; Jin, Y.; Stein, A.; Chen, Y.; Wang, J.; Wang, J.; Cheng, Q.; Bai, H.; Liu, M.; Atkinson, P.M. Principles and Methods of Scaling Geospatial Earth Science Data. Earth-Sci. Rev. 2019, 197, 102897. [Google Scholar] [CrossRef]
- Jiang, H.; Shihua, L.; Dong, Y. Multidimensional Meteorological Variables for Wind Speed Forecasting in Qinghai Region of China: A Novel Approach. Adv. Meteorol. 2020, 2020, 5396473. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Lv, Z. Uncertainty Assessment in Multitemporal Land Use/Cover Mapping with Classification System Semantic Heterogeneity. Remote Sens. 2019, 11, 2509. [Google Scholar] [CrossRef]
- Rufino, M.M.; Bez, N.; Brind’Amour, A. Ability of Spatial Indicators to Detect Geographic Changes (Shift, Shrink and Split) across Biomass Levels and Sample Sizes. Ecol. Indic. 2020, 115, 106393. [Google Scholar] [CrossRef]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Identifying Spatial Variability and Complexity in Wetland Vegetation Using an Object-Based Approach. Int. J. Remote Sens. 2016, 37, 4296–4316. [Google Scholar] [CrossRef]
- Batty, M.; Morphet, R.; Masucci, P.; Stanilov, K. Entropy, Complexity, and Spatial Information. J. Geogr. Syst. 2014, 16, 363–385. [Google Scholar] [CrossRef]
- Yanovski, R.; Nelson, P.A.; Abelson, A. Structural Complexity in Coral Reefs: Examination of a Novel Evaluation Tool on Different Spatial Scales. Front. Ecol. Evol. 2017, 5, 27. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Luo, P.; Wu, P. Geocomplexity Explains Spatial Errors. Int. J. Geogr. Inf. Sci. 2023, 37, 1449–1469. [Google Scholar] [CrossRef]
- Xie, H.; Tong, X.; Meng, W.; Liang, D.; Wang, Z.; Shi, W. A Multilevel Stratified Spatial Sampling Approach for the Quality Assessment of Remote-Sensing-Derived Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4699–4713. [Google Scholar] [CrossRef]
- Li, G.; Gao, Q.; Yang, M.; Gao, X. Active Learning Based on Similarity Level Histogram and Adaptive-Scale Sampling for Very High Resolution Image Classification. Neural Netw. 2023, 167, 22–35. [Google Scholar] [CrossRef]
- Buolamwini, J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency, New York, NY, USA, 23–24 February 2018. [Google Scholar]
- Krishnan, R.; Sinha, A.; Ahuja, N.A.; Subedar, M.; Tickoo, O.; Iyer, R.R. Mitigating Sampling Bias and Improving Robustness in Active Learning. arXiv 2021, arXiv:Abs/2109.06321. [Google Scholar]
- Bhatt, U.; Antorán, J.; Zhang, Y.; Liao, Q.V.; Sattigeri, P.; Fogliato, R.; Melançon, G.; Krishnan, R.; Stanley, J.; Tickoo, O.; et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, 19–21 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 401–413. [Google Scholar]
- Li, W.; Chen, K.; Chen, H.; Shi, Z. Geographical Knowledge-Driven Representation Learning for Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5405516. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Zhang, G.; Liu, R.; Huang, H.; Zhu, Q.; Tao, C. Global and Local Contrastive Self-Supervised Learning for Semantic Segmentation of HR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5618014. [Google Scholar] [CrossRef]
- Lin, D.; Fu, K.; Wang, Y.; Xu, G.; Sun, X. MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2092–2096. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.-S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Li, C.; Ma, Z.; Wang, L.; Yu, W.; Tan, D.; Gao, B.; Feng, Q.; Guo, H.; Zhao, Y. Improving the Accuracy of Land Cover Mapping by Distributing Training Samples. Remote Sens. 2021, 13, 4594. [Google Scholar] [CrossRef]
- Wagenaar, D.; Hermawan, T.; Van Den Homberg, M.J.C.; Aerts, J.C.J.H.; Kreibich, H.; De Moel, H.; Bouwer, L.M. Improved Transferability of Data-Driven Damage Models Through Sample Selection Bias Correction. Risk Anal. 2021, 41, 37–55. [Google Scholar] [CrossRef]
- Zadrozny, B. Learning and Evaluating Classifiers under Sample Selection Bias. In Proceedings of the Twenty-First International Conference on Machine Learning—ICML’04, Banff, AB, Canada, 4–8 July 2004; ACM Press: Banff, AB, Canada, 2004; p. 114. [Google Scholar]
- Boschetti, L.; Stehman, S.V.; Roy, D.P. A Stratified Random Sampling Design in Space and Time for Regional to Global Scale Burned Area Product Validation. Remote Sens. Environ. 2016, 186, 465–478. [Google Scholar] [CrossRef]
- Wagner, J.E.; Stehman, S.V. Optimizing Sample Size Allocation to Strata for Estimating Area and Map Accuracy. Remote Sens. Environ. 2015, 168, 126–133. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Mei, Y.; Yang, W. Geostatistical Characterization of Local Accuracies in Remotely Sensed Land Cover Change Categorization with Complexly Configured Reference Samples. Remote Sens. Environ. 2019, 223, 63–81. [Google Scholar] [CrossRef]
- Meng, X.-L. Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election. Ann. Appl. Stat. 2018, 12, 685–726. [Google Scholar] [CrossRef]
- Wang, J.; Haining, R.; Zhang, T.; Xu, C.; Hu, M.; Yin, Q.; Li, L.; Zhou, C.; Li, G.; Chen, H. Statistical Modeling of Spatially Stratified Heterogeneous Data. Ann. Am. Assoc. Geogr. 2024, 114, 499–519. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved Land Cover Map of Iran Using Sentinel Imagery within Google Earth Engine and a Novel Automatic Workflow for Land Cover Classification Using Migrated Training Samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Priyanka, N.S.; Lal, S.; Nalini, J.; Reddy, C.S.; Dell’Acqua, F. DIResUNet: Architecture for Multiclass Semantic Segmentation of High Resolution Remote Sensing Imagery Data. Appl. Intell. 2022, 52, 15462–15482. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, X.; Ning, C. Multi-Label Remote Sensing Scene Classification Using Multi-Bag Integration. IEEE Access 2019, 7, 120399–120410. [Google Scholar] [CrossRef]
- Ilunga, M. Shannon Entropy for Measuring Spatial Complexity Associated with Mean Annual Runoff of Tertiary Catchments of the Middle Vaal Basin in South Africa. Entropy 2019, 21, 366. [Google Scholar] [CrossRef]
- Guo, L.; Du, S.; Haining, R.; Zhang, L. Global and Local Indicators of Spatial Association between Points and Polygons: A Study of Land Use Change. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 384–396. [Google Scholar] [CrossRef]
- Frigg, R.; Werndl, C. Entropy: Aguide for the Perplexed. In Probabilities in Physics; Beisbart, C., Hartmann, S., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 115–142. ISBN 978-0-19-957743-9. [Google Scholar]
- Li, L. Deep Residual Autoencoder with Multiscaling for Semantic Segmentation of Land-Use Images. Remote Sens. 2019, 11, 2142. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Z.; Wang, C. Multiscale Entropy-Based Surface Complexity Analysis for Land Cover Image Semantic Segmentation. Remote Sens. 2023, 15, 2192. [Google Scholar] [CrossRef]
- Li, H.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large Kernel Matters—Improve Semantic Segmentation by Global Convolutional Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Honolulu, HI, USA, 2017; pp. 1743–1751. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: Las Vegas, NV, USA, 2016; pp. 770–778. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified Perceptual Parsing for Scene Understanding. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 432–448. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Álvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Proceedings of the Neural Information Processing Systems, Online, 6–14 December 2021. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A Survey on Deep Learning Techniques for Image and Video Semantic Segmentation. Appl. Soft Comput. 2018, 70, 41–65. [Google Scholar] [CrossRef]
- Tong, X.-Y.; Xia, G.-S.; Zhu, X.X. Enabling Country-Scale Land Cover Mapping with Meter-Resolution Satellite Imagery. ISPRS J. Photogramm. Remote Sens. 2023, 196, 178–196. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Ma, Y.D.; Qing, L.; Qian, Z.B. Automated Image Segmentation Using Improved PCNN Model Based on Cross-Entropy. In Proceedings of the 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, Hong Kong, China, 20–22 October 2004; pp. 743–746. [Google Scholar]
- Jadon, S. A Survey of Loss Functions for Semantic Segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020; IEEE: Via del Mar, Chile, 2020; pp. 1–7. [Google Scholar]
- Moran, P. artist Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Butler, B.J.; Hodges, D.G. Spatial Analysis of Family Forest Landownership in the Southern United States. Landsc. Urban Plan. 2019, 188, 163–170. [Google Scholar] [CrossRef]
- Colditz, R. An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef]
- Liu, Z.; Pontius, R.G., Jr. The Total Operating Characteristic from Stratified Random Sampling with an Application to Flood Mapping. Remote Sens. 2021, 13, 3922. [Google Scholar] [CrossRef]
- Shetty, S.; Gupta, P.K.; Belgiu, M.; Srivastav, S.K. Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sens. 2021, 13, 1433. [Google Scholar] [CrossRef]
- Cheng, J.; Deng, C.; Su, Y.; An, Z.; Wang, Q. Methods and Datasets on Semantic Segmentation for Unmanned Aerial Vehicle Remote Sensing Images: A Review. ISPRS J. Photogramm. Remote Sens. 2024, 211, 1–34. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep Learning in Remote Sensing Applications: A Meta-Analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
Model | Simple Random Sampling | Single-Score Optimal Sampling | Multi-Score Optimal Sampling | |||||
---|---|---|---|---|---|---|---|---|
ACC | MIoU | ACC | MIoU | Improved a | ACC | MIoU | Improved a | |
FCN-ResNet | 0.968 | 0.428 | 0.970 | 0.447 | 1.9% | 0.968 | 0.427 | - |
DeepLab-V3 (Encoder:Resnet101) | 0.972 | 0.419 | 0.975 | 0.474 | 5.5% | 0.972 | 0.424 | 0.5% |
SegNet | 0.971 | 0.458 | 0.973 | 0.492 | 3.4% | 0.971 | 0.453 | - |
Segformer (backbone:B0) | 0.974 | 0.506 | 0.976 | 0.529 | 2.3% | 0.976 | 0.530 | 2.4% |
UNet | 0.975 | 0.520 | 0.977 | 0.550 | 3.0% | 0.977 | 0.542 | 2.2% |
Global CNN | 0.981 | 0.600 | 0.982 | 0.618 | 1.8% | 0.981 | 0.611 | 1.1% |
UperNet (backbone:Resnet101) | 0.982 | 0.618 | 0.982 | 0.628 | 1.0% | 0.982 | 0.624 | 0.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Li, L.; Gao, X. Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias. Remote Sens. 2024, 16, 1987. https://doi.org/10.3390/rs16111987
He W, Li L, Gao X. Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias. Remote Sensing. 2024; 16(11):1987. https://doi.org/10.3390/rs16111987
Chicago/Turabian StyleHe, Wei, Lianfa Li, and Xilin Gao. 2024. "Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias" Remote Sensing 16, no. 11: 1987. https://doi.org/10.3390/rs16111987
APA StyleHe, W., Li, L., & Gao, X. (2024). Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias. Remote Sensing, 16(11), 1987. https://doi.org/10.3390/rs16111987