A Robust High-Accuracy Star Map Matching Algorithm for Dense Star Scenes
Abstract
:1. Introduction
2. Star Map Matching
2.1. Rough Matching
Algorithm 1 Calculate Matching Degree |
Input:
//Logical Matrix of Candidate Combinations Output: D // Matching Degree
|
- A
- Calculate the Angle Matrix
- B
- Finding Matching Stars
- C
- Determine the Rough Transformation Matrix
2.2. Fine Matching
3. Synthesis and Measured Data Testing
3.1. Introduction to Comparison Algorithms
3.2. Introduction to Test Data
3.2.1. Synthetic Data
3.2.2. Measured Data
3.3. Introduction to Evaluation Metrics
3.4. Test Results
3.4.1. Synthetic Data Visual Axis Pointing Deviation Test Results
3.4.2. Synthetic Data False Star Test Results
3.4.3. Synthetic Data Positioning Deviation Test Results
3.4.4. Synthetic Data Magnitude Deviation Test Results
3.4.5. Measured Data Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christian, J.A.; Crassidis, J.L. Star Identification and Attitude Determination with Projective Cameras. IEEE Access 2021, 9, 25768–25794. [Google Scholar] [CrossRef]
- Liu, H.; Wei, X.; Li, J.; Wang, G. A star identification algorithm based on simplest general subgraph. Acta Astronaut. 2021, 183, 11–22. [Google Scholar] [CrossRef]
- Zhang, G. Star Identification: Methods, Techniques and Algorithms; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2017; Chapter 1; pp. 24–32. [Google Scholar] [CrossRef]
- Cole, C.L.; Crassidis, J.L. Fast Star-Pattern Recognition Using Planar Triangles. J. Guid. Control. Dyn. 2006, 29, 64–71. [Google Scholar] [CrossRef]
- Somayehee, F.; Nikkhah, A.A.; Roshanian, J.; Salahshoor, S. Blind Star Identification Algorithm. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 547–557. [Google Scholar] [CrossRef]
- Liu, M.; Wei, X.; Wen, D.; Wang, H. Star Identification Based on Multilayer Voting Algorithm for Star Sensors. Sensors 2021, 21, 3084. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.J.; Wei, X.G.; Jiang, J. Star Map Identification Based on a Modified Triangle Algorithm. Acta Aeronaut. Astronaut. Sin. 2006, 27, 1150–1154. [Google Scholar]
- Zhao, Y.; Wei, X.; Li, J.; Wang, G. Star Identification Algorithm Based on K–L Transformation and Star Walk Formation. IEEE Sens. J. 2016, 16, 5202–5210. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Wei, X. Star Identification Based on Hash Map. IEEE Sens. J. 2018, 18, 1591–1599. [Google Scholar] [CrossRef]
- Leake, C.; Arnas, D.; Mortari, D. Non-Dimensional Star-Identification. Sensors 2020, 20, 2697. [Google Scholar] [CrossRef]
- Mortari, D. Search-Less Algorithm for Star Pattern Recognition. J. Astronaut. Sci. 1997, 45, 179–194. [Google Scholar] [CrossRef]
- Hernández, E.A.; Alonso, M.A.; Chávez, E.; Covarrubias, D.H.; Conte, R. Robust polygon recognition method with similarity invariants applied to star identification. Adv. Space Res. 2017, 59, 1095–1111. [Google Scholar] [CrossRef]
- Toloei, A.; Zahednamazi, M.; Ghasemi, R.; Mohammadi, F. A comparative analysis of star identification algorithms. Astrophys. Space Sci. 2020, 365, 63. [Google Scholar] [CrossRef]
- Niu, Y.; Wei, X.; Li, J. Fast and Robust Star Identification Using Color Ratio Information. IEEE Sens. J. 2022, 22, 20401–20412. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, J.; Zhu, K.; Li, X. A Star-Identification Algorithm Based on Global Multi-Triangle Voting. Appl. Sci. 2022, 12, 9993. [Google Scholar] [CrossRef]
- Spratling, B.B.; Mortari, D. A Survey on Star Identification Algorithms. Algorithms 2009, 2, 93–107. [Google Scholar] [CrossRef]
- Liebe, C. Pattern recognition of star constellations for spacecraft applications. IEEE Aerosp. Electron. Syst. Mag. 1993, 8, 31–39. [Google Scholar] [CrossRef]
- Liebe, C. Star trackers for attitude determination. IEEE Aerosp. Electron. Syst. Mag. 1995, 10, 10–16. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, J.; Zhang, G.; Wei, X. A Discrete HMM-Based Feature Sequence Model Approach for Star Identification. IEEE Sens. J. 2016, 16, 931–940. [Google Scholar] [CrossRef]
- Padgett, C.; Kreutz-Delgado, K. A grid algorithm for autonomous star identification. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 202–213. [Google Scholar] [CrossRef]
- Clouse, D.; Padgett, C. Small field-of-view star identification using Bayesian decision theory. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 773–783. [Google Scholar] [CrossRef]
- Silani, E.; Lovera, M. Star identification algorithms: Novel approach & comparison study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1275–1288. [Google Scholar] [CrossRef]
- Aghaei, M.; Moghaddam, H.A. Grid star identification improvement using optimization approaches. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 2080–2090. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Wang, G.; Zhou, S. Improved Grid Algorithm Based on Star Pair Pattern and Two-dimensional Angular Distances for Full-Sky Star Identification. IEEE Access 2020, 8, 1010–1020. [Google Scholar] [CrossRef]
- Lee, H.; Bang, H. Star Pattern Identification Technique by Modified Grid Algorithm. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1112–1116. [Google Scholar] [CrossRef]
- Wei, X.; Wen, D.; Song, Z.; Xi, J.; Zhang, W.; Liu, G.; Li, Z. A star identification algorithm based on radial and dynamic cyclic features of star pattern. Adv. Space Res. 2019, 63, 2245–2259. [Google Scholar] [CrossRef]
- Liu, H.; Wei, X.; Li, J.; Wang, G. A Star Identification Algorithm Based on Recommended Radial Pattern. IEEE Sens. J. 2022, 22, 8030–8040. [Google Scholar] [CrossRef]
- Schiattarella, V.; Spiller, D.; Curti, F. A novel star identification technique robust to high presence of false objects: The Multi-Poles Algorithm. Adv. Space Res. 2017, 59, 2133–2147. [Google Scholar] [CrossRef]
- Schiattarella, V.; Spiller, D.; Curti, F. Star identification robust to angular rates and false objects with rolling shutter compensation. Acta Astronaut. 2020, 166, 243–259. [Google Scholar] [CrossRef]
- Mehta, D.S.; Chen, S.; Low, K.S. A robust star identification algorithm with star shortlisting. Adv. Space Res. 2018, 61, 2647–2660. [Google Scholar] [CrossRef]
- Mehta, D.S.; Chen, S.; Low, K.S. A Rotation-Invariant Additive Vector Sequence Based Star Pattern Recognition. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 689–705. [Google Scholar] [CrossRef]
- Kolomenkin, M.; Pollak, S.; Shimshoni, I.; Lindenbaum, M. Geometric voting algorithm for star trackers. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 441–456. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Zhang, G. Iterative algorithm for autonomous star identification. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 536–547. [Google Scholar] [CrossRef]
- Bubeck, S.; Sellke, M. A Universal Law of Robustness via Isoperimetry. J. ACM 2023, 70, 1–18. [Google Scholar] [CrossRef]
- Rijlaarsdam, D.; Yous, H.; Byrne, J.; Oddenino, D.; Furano, G.; Moloney, D. Efficient Star Identification Using a Neural Network. Sensors 2020, 20, 3684. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Wang, B.; Yu, Z.; Jin, Z.; Crassidis, J.L. An artificial intelligence enhanced star identification algorithm. Front. Inf. Technol. Electron. Eng. 2020, 21, 1661–1670. [Google Scholar] [CrossRef]
- Han, J.; Yang, X.; Xu, T.; Fu, Z.; Chang, L.; Yang, C.; Jin, G. An End-to-End Identification Algorithm for Smearing Star Image. Remote Sens. 2021, 13, 4541. [Google Scholar] [CrossRef]
- Wang, B.; Wang, H.; Jin, Z. An Efficient and Robust Star Identification Algorithm Based on Neural Networks. Sensors 2021, 21, 7686. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, L.; Zhang, G. Star Identification Based on Spider-Web Image and Hierarchical CNN. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3055–3062. [Google Scholar] [CrossRef]
- Yang, S.; Liu, L.; Zhou, J.; Zhao, Y.; Hua, G.; Sun, H.; Zheng, N. Robust and Efficient Star Identification Algorithm based on 1-D Convolutional Neural Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 4156–4167. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.H.; Tian, X.Z.; Yang, L.; Zhang, P.J.; Chen, B. Modeling and correction of pointing error of space-borne optical imager. Optik 2021, 247, 167998. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, L.; Niu, Z.; Li, Y.; Zhang, J.; Wang, Z. A Practical Star Image Registration Algorithm Using Radial Module and Rotation Angle Features. Remote Sens. 2023, 15, 5146. [Google Scholar] [CrossRef]
Num_SM | Num_SC | Deg_Match |
---|---|---|
Pointing Deviation | False Star | Positioning Deviation | Magnitude Deviation | Measured Data | Score | |
---|---|---|---|---|---|---|
RIAV | 8.46 | 3.33 | 6.48 | 5.61 | 55.48 | 15.87 |
GMV | 38.43 | 3.75 | 5.08 | 19.18 | 68.17 | 26.92 |
Proposed Method | 98.97 | 97.75 | 96.39 | 98.91 | 90.08 | 96.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Niu, Z.; Li, Y.; Wang, Z. A Robust High-Accuracy Star Map Matching Algorithm for Dense Star Scenes. Remote Sens. 2024, 16, 2035. https://doi.org/10.3390/rs16112035
Sun Q, Niu Z, Li Y, Wang Z. A Robust High-Accuracy Star Map Matching Algorithm for Dense Star Scenes. Remote Sensing. 2024; 16(11):2035. https://doi.org/10.3390/rs16112035
Chicago/Turabian StyleSun, Quan, Zhaodong Niu, Yabo Li, and Zhuang Wang. 2024. "A Robust High-Accuracy Star Map Matching Algorithm for Dense Star Scenes" Remote Sensing 16, no. 11: 2035. https://doi.org/10.3390/rs16112035
APA StyleSun, Q., Niu, Z., Li, Y., & Wang, Z. (2024). A Robust High-Accuracy Star Map Matching Algorithm for Dense Star Scenes. Remote Sensing, 16(11), 2035. https://doi.org/10.3390/rs16112035