Inter-Comparison of SST Products from iQuam, AMSR2/GCOM-W1, and MWRI/FY-3D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. MWRI SST
2.1.2. AMSR2 SST
2.1.3. iQuam SST
2.2. Method
2.2.1. Quality Control
2.2.2. Data Collocation
2.2.3. Comparison Method
- (a)
- Extend triple collocation
- (b) Direct comparison
3. Results
3.1. ETC Analysis
3.2. Direct Comparison
3.3. Error Analyses
- (a)
- Temporal variation in error characteristics
- (b) Latitudinal variation in error characteristics
- (c) Variation in error characteristics relate to SST
- (d) Variation in error characteristics relate to sea surface wind
- (e) Variation in error characteristics relate to columnar water vapor
- (f) Variation in error characteristics relate to columnar cloud liquid water
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Ateweberhan, M.; McClanahan, T.R. Relationship between Historical Sea-Surface Temperature Variability and Climate Change-Induced Coral Mortality in the Western Indian Ocean. Mar. Pollut. Bull. 2010, 60, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Enfield, D.B.; Mestas-Nuñez, A.M. Multiscale Variabilities in Global Sea Surface Temperatures and Their Relationships with Tropospheric Climate Patterns. J. Clim. 1999, 12, 2719–2733. [Google Scholar] [CrossRef]
- Ruela, R.; Sousa, M.C.; deCastro, M.; Dias, J.M. Global and Regional Evolution of Sea Surface Temperature under Climate Change. Glob. Planet. Chang. 2020, 190, 103190. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L.; et al. Observational Needs of Sea Surface Temperature. Front. Mar. Sci. 2019, 6, 420. [Google Scholar] [CrossRef]
- Hausmann, U.; Czaja, A. The Observed Signature of Mesoscale Eddies in Sea Surface Temperature and the Associated Heat Transport. Deep Sea Res. Part Oceanogr. Res. Pap. 2012, 70, 60–72. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Zhang, Y.; Zhang, H.-R.; Chai, F. Distribution and Variability of Sea Surface Temperature Fronts in the South China Sea. Estuar. Coast. Shelf Sci. 2020, 240, 106793. [Google Scholar] [CrossRef]
- Tandeo, P.; Chapron, B.; Ba, S.; Autret, E.; Fablet, R. Segmentation of Mesoscale Ocean Surface Dynamics Using Satellite SST and SSH Observations. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4227–4235. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; et al. Challenges and Prospects in Ocean Circulation Models. Front. Mar. Sci. 2019, 6, 65. [Google Scholar] [CrossRef]
- Dong, B.; Dai, A.; Vuille, M.; Timm, O.E. Asymmetric Modulation of ENSO Teleconnections by the Interdecadal Pacific Oscillation. J. Clim. 2018, 31, 7337–7361. [Google Scholar] [CrossRef]
- Jha, B.; Hu, Z.-Z.; Kumar, A. SST and ENSO Variability and Change Simulated in Historical Experiments of CMIP5 Models. Clim. Dyn. 2014, 42, 2113–2124. [Google Scholar] [CrossRef]
- Kennedy, J.J. A Review of Uncertainty in in Situ Measurements and Data Sets of Sea Surface Temperature. Rev. Geophys. 2014, 52, 1–32. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In Situ SST Quality Monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a Century of Satellite Remote Sensing of Sea-Surface Temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Minnett, P.J. The Validation of Sea Surface Temperature Retrievals from Spaceborne Infrared Radiometers. In Oceanography from Space; Barale, V., Gower, J.F.R., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 229–247. ISBN 978-90-481-8680-8. [Google Scholar]
- Zhang, H.; Beggs, H.; Griffin, C.; Govekar, P.D. Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements. Remote Sens. 2023, 15, 2841. [Google Scholar] [CrossRef]
- Koutantou, K.; Brunner, P.; Vazquez-Cuervo, J. Validation of NASA Sea Surface Temperature Satellite Products Using Saildrone Data. Remote Sens. 2023, 15, 2277. [Google Scholar] [CrossRef]
- Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite Measurements of Sea Surface Temperature Through Clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Gloersen, P.; Barath, F. A Scanning Multichannel Microwave Radiometer for Nimbus-G and SeaSat-A. IEEE J. Ocean. Eng. 1977, 2, 172–178. [Google Scholar] [CrossRef]
- Bernstein, R.L. Sea Surface Temperature Mapping with the SEASAT Microwave Radiometer. J. Geophys. Res. Oceans 1982, 87, 7865–7872. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Wentz, F.J.; Mears, C.A.; Smith, D.K. In Situ Validation of Tropical Rainfall Measuring Mission Microwave Sea Surface Temperatures. J. Geophys. Res. Oceans 2004, 109, C04021. [Google Scholar] [CrossRef]
- Stammer, D.; Wentz, F.; Gentemann, C. Validation of Microwave Sea Surface Temperature Measurements for Climate Purposes. J. Clim. 2003, 16, 73–87. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Toudal Pedersen, L.; Gentemann, C.L.; Alerskans, E.; Block, T.; Donlon, C. Optimal Estimation of Sea Surface Temperature from AMSR-E. Remote Sens. 2018, 10, 229. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F. High Quality Sea Surface Temperature from the Windsat Radiometer: Algorithm and Validation. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE: Barcelona, Spain, 2007; pp. 862–864. [Google Scholar]
- Kim, H.-Y.; Park, K.-A.; Chung, S.-R.; Baek, S.-K.; Lee, B.-I.; Shin, I.-C.; Chung, C.-Y.; Kim, J.-G.; Jung, W.-C. Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific. Korean J. Remote Sens. 2018, 34, 1–15. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Hilburn, K.A. In Situ Validation of Sea Surface Temperatures from the GCOM-W 1 AMSR 2 RSS Calibrated Brightness Temperatures. J. Geophys. Res. Oceans 2015, 120, 3567–3585. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.; Lin, M.; Chen, C.; Huang, X.; Wang, H.; Zhang, Y.; Peng, H. Assessment of the Initial Sea Surface Temperature Product of the Scanning Microwave Radiometer Aboard on HY-2 Satellite. Acta Oceanol. Sin. 2014, 33, 109–113. [Google Scholar] [CrossRef]
- Liu, M.; Guan, L.; Zhao, W.; Chen, G. Evaluation of Sea Surface Temperature From the HY-2 Scanning Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1372–1380. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, H.; Wang, Z.; Yin, X.; Yang, L.; Du, H.; Li, B.; Wang, Y.; Zhou, W. Evaluation of the Initial Sea Surface Temperature From the HY-2B Scanning Microwave Radiometer. IEEE Geosci. Remote Sens. Lett. 2021, 18, 137–141. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Qin, D.; Qiu, H.; Tang, S. The inversion and quality validation of FY-3C MWRI sea surface temperature. Natl. Remote Sens. Bull. 2018, 22, 713–722. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, P.; Gu, S.; Hu, X.; Tang, S.; Yang, L.; Xu, N.; Zhen, Z.; Wang, L.; Wu, Q.; et al. Capability of Fengyun-3D Satellite in Earth System Observation. J. Meteorol. Res. 2019, 33, 1113–1130. [Google Scholar] [CrossRef]
- Okuyama, A.; Imaoka, K. Intercalibration of Advanced Microwave Scanning Radiometer-2 (AMSR2) Brightness Temperature. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4568–4577. [Google Scholar] [CrossRef]
- Zhang, H.; Ignatov, A.; Hinshaw, D. Evaluation of the In Situ Sea Surface Temperature Quality Control in the NOAA in Situ SST Quality Monitor (iQuam) System. J. Atmos. Ocean. Technol. 2021, 38, 1249–1263. [Google Scholar] [CrossRef]
- Woo, H.-J.; Park, K.-A. Inter-Comparisons of Daily Sea Surface Temperatures and In-Situ Temperatures in the Coastal Regions. Remote Sens. 2020, 12, 1592. [Google Scholar] [CrossRef]
- Kennedy, J.J.; Rayner, N.A.; Smith, R.O.; Parker, D.E.; Saunby, M. Reassessing Biases and Other Uncertainties in Sea Surface Temperature Observations Measured in Situ since 1850: 1. Measurement and Sampling Uncertainties. J. Geophys. Res. Atmos. 2011, 116, D14103. [Google Scholar] [CrossRef]
- Dong, S.; Gille, S.T.; Sprintall, J.; Gentemann, C. Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) Sea Surface Temperature in the Southern Ocean. J. Geophys. Res. Oceans 2006, 111, C04002. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Minnett, P.J. Radiometric Measurements of the Sea-Surface Skin Temperature: The Competing Roles of the Diurnal Thermocline and the Cool Skin. Int. J. Remote Sens. 2003, 24, 5033–5047. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-Skin and Warm-Layer Effects on Sea Surface Temperature. J. Geophys. Res. Oceans 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, M.; Qu, L.; Guan, L. Regional Study on the Oceanic Cool Skin and Diurnal Warming Effects: Observing and Modeling. Remote Sens. 2023, 15, 3814. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the True Near-Surface Wind Speed: Error Modeling and Calibration Using Triple Collocation. J. Geophys. Res. Oceans 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Gruber, A.; Su, C.-H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent Advances in (Soil Moisture) Triple Collocation Analysis. Adv. Valid. Appl. Remote. Sensed Soil Moisture Part 1 2016, 45, 200–211. [Google Scholar] [CrossRef]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef]
- Peng, J.; Misra, S.; Piepmeier, J.R.; Dinnat, E.P.; Yueh, S.H.; Meissner, T.; Vine, D.M.L.; Shelton, K.E.; Freedman, A.P.; Dunbar, R.S.; et al. Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Upgrade. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1647–1657. [Google Scholar] [CrossRef]
- Hong, Z.; Moreno, H.A.; Li, Z.; Li, S.; Greene, J.S.; Hong, Y.; Alvarez, L.V. Triple Collocation of Ground-, Satellite- and Land Surface Model-Based Surface Soil Moisture Products in Oklahoma—Part I: Individual Product Assessment. Remote Sens. 2022, 14, 5641. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Hong, Y. Cross-Evaluation of Ground-Based, Multi-Satellite and Reanalysis Precipitation Products: Applicability of the Triple Collocation Method across Mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Wild, A.; Chua, Z.-W.; Kuleshov, Y. Triple Collocation Analysis of Satellite Precipitation Estimates over Australia. Remote Sens. 2022, 14, 2724. [Google Scholar] [CrossRef]
- Hoareau, N.; Portabella, M.; Lin, W.; Ballabrera-Poy, J.; Turiel, A. Error Characterization of Sea Surface Salinity Products Using Triple Collocation Analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5160–5168. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. Error Characterization in iQuam SSTs Using Triple Collocations with Satellite Measurements. Geophys. Res. Lett. 2016, 43, 10826–10834. [Google Scholar] [CrossRef]
- Caires, S.; Sterl, A. Validation of Ocean Wind and Wave Data Using Triple Collocation. J. Geophys. Res. Oceans 2003, 108, 3098. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended Triple Collocation: Estimating Errors and Correlation Coefficients with Respect to an Unknown Target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance Metrics for Soil Moisture Retrievals and Application Requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Zwieback, S.; Scipal, K.; Dorigo, W.; Wagner, W. Structural and Statistical Properties of the Collocation Technique for Error Characterization. Nonlinear Process. Geophys. 2012, 19, 69–80. [Google Scholar] [CrossRef]
- Alerskans, E.; Høyer, J.L.; Gentemann, C.L.; Pedersen, L.T.; Nielsen-Englyst, P.; Donlon, C. Construction of a Climate Data Record of Sea Surface Temperature from Passive Microwave Measurements. Remote Sens. Environ. 2020, 236, 111485. [Google Scholar] [CrossRef]
- Zhou, W.; Lin, M.; Li, W.; Yin, X.; Li, Y.; Li, X.; Li, Q.; Wang, S.; Yu, R. HY-2B SMR’s Sea Surface Temperature Retrieval Considering Parameter Crosstalk. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4207812. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Meissner, T.; Wentz, F.J. Accuracy of Satellite Sea Surface Temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1009–1018. [Google Scholar] [CrossRef]
- Li, Z.C.; Jiang, G.M. Sea Surface Temperature Retrieval From the FY-3D MWRI Measurements. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4201010. [Google Scholar] [CrossRef]
Frequency (GHz) | Polarization | Band Width (MHz) | IFOV (km) | NE∆T (k) |
---|---|---|---|---|
10.65 | V.H | 180 | 51 × 85 | 0.5 |
18.7 | V.H | 200 | 30 × 50 | 0.5 |
23.8 | V.H | 400 | 27 × 45 | 0.5 |
36.5 | V.H | 900 | 18 × 30 | 0.5 |
89 | V.H | 2 × 2300 | 9 × 15 | 0.8 |
Frequency (GHz) | Polarization | Band Width (MHz) | IFOV (km) | NE∆T (k) |
---|---|---|---|---|
6.925 | V.H | 350 | 35 × 62 | <0.34 |
7.3 | V.H | 350 | 35 × 62 | <0.43 |
10.65 | V.H | 100 | 24 × 42 | <0.70 |
18.7 | V.H | 200 | 14 × 22 | <0.70 |
23.8 | V.H | 400 | 15 × 26 | <0.60 |
36.5 | V.H | 1000 | 7 × 12 | <0.70 |
89 | V.H | 3000 | 3 × 5 | <1.20/1.402 |
Observation Time | iQuam Platforms | |||||||
---|---|---|---|---|---|---|---|---|
ALL | Ship | Drifting | T-M | C-M | Argo | HR-D | IMOS | |
Daytime | 279,246 | 14,534 | 171,704 | 3194 | 67,499 | 2001 | 12,655 | 7625 |
Nighttime | 268,786 | 11,702 | 171,578 | 3516 | 57,092 | 2318 | 13,244 | 9301 |
Data | ETC Results | ALL | Ship | Drifting | T-M | C-M | Argo | HR-D | IMOS |
---|---|---|---|---|---|---|---|---|---|
iQuam | °C | 0.41 | 0.83 | 0.30 | 0.28 | 0.51 | 0.32 | 0.30 | 0.52 |
0.9976 | 0.9892 | 0.9986 | 0.9852 | 0.9962 | 0.9988 | 0.9979 | 0.9962 | ||
AMSR2 | °C | 0.43 | 0.65 | 0.42 | 0.15 | 0.38 | 0.45 | 0.38 | 0.31 |
0.9972 | 0.9935 | 0.9974 | 0.9962 | 0.9979 | 0.9976 | 0.9966 | 0.9987 | ||
MWRI | °C | 1.22 | 1.27 | 1.21 | 0.89 | 1.21 | 1.22 | 1.21 | 1.17 |
0.9775 | 0.9752 | 0.9777 | 0.8640 | 0.9778 | 0.9817 | 0.9637 | 0.9806 |
Data | ETC Results | ALL | Ship | Drifting | T-M | C-M | Argo | HR-D | IMOS |
---|---|---|---|---|---|---|---|---|---|
iQuam | °C | 0.38 | 0.84 | 0.32 | 0.20 | 0.41 | 0.35 | 0.32 | 0.54 |
0.9978 | 0.9896 | 0.9985 | 0.9913 | 0.9976 | 0.9985 | 0.9975 | 0.9960 | ||
AMSR2 | °C | 0.41 | 0.58 | 0.39 | 0.21 | 0.42 | 0.34 | 0.36 | 0.44 |
0.9975 | 0.9952 | 0.9976 | 0.9913 | 0.9975 | 0.9986 | 0.9969 | 0.9975 | ||
MWRI | °C | 1.19 | 1.17 | 1.18 | 0.97 | 1.13 | 1.20 | 1.17 | 1.15 |
0.9788 | 0.9799 | 0.9787 | 0.8016 | 0.9810 | 0.9823 | 0.9666 | 0.9828 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, P.; Zhou, W. Inter-Comparison of SST Products from iQuam, AMSR2/GCOM-W1, and MWRI/FY-3D. Remote Sens. 2024, 16, 2034. https://doi.org/10.3390/rs16112034
Zhao Y, Liu P, Zhou W. Inter-Comparison of SST Products from iQuam, AMSR2/GCOM-W1, and MWRI/FY-3D. Remote Sensing. 2024; 16(11):2034. https://doi.org/10.3390/rs16112034
Chicago/Turabian StyleZhao, Yili, Ping Liu, and Wu Zhou. 2024. "Inter-Comparison of SST Products from iQuam, AMSR2/GCOM-W1, and MWRI/FY-3D" Remote Sensing 16, no. 11: 2034. https://doi.org/10.3390/rs16112034
APA StyleZhao, Y., Liu, P., & Zhou, W. (2024). Inter-Comparison of SST Products from iQuam, AMSR2/GCOM-W1, and MWRI/FY-3D. Remote Sensing, 16(11), 2034. https://doi.org/10.3390/rs16112034