Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Erosion Potential Method (EPM)
2.3. Application of Multispectral Satellite Imagery
2.4. Application of the Spectral Index (Bare Soil Index––BSI)
2.5. The Accuracy Assessment and Validation of the Coefficient φ
3. Results
3.1. The Collection of Satellite Imagery and Creation of Thematic Maps of the Types and Extent of Erosion and Slumps
3.2. Validation of the Obtained Results (Accuracy Assessment)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; Bartholic, J. Predicting Sediment Delivery Ratio in Saginaw Bay Watershed. In Proceedings of the 22nd National Association of Environmental Professionals Conference, Orlando, FL, USA, 19–23 May 1997; pp. 659–671. [Google Scholar]
- Noori, H.; Siadatmousavi, S.M.; Mojaradi, B. Assessment of Sediment Yield Using RS and GIS at Two Sub-Basins of Dez Watershed, Iran. Int. Soil Water Conserv. Res. 2016, 4, 199–206. [Google Scholar] [CrossRef]
- De Koning, G.H.J.; Veldkamp, A.; Fresco, L.O. Land Use in Ecuador: A Statistical Analysis at Different Aggregation Levels. Agric. Ecosyst. Environ. 1998, 70, 231–247. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Montier, C.; Jamagne, M.; Daroussin, J.; King, D. Mapping Erosion Risk for Cultivated Soil in France. Catena 2002, 46, 207–220. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A. A Spatial Information Technology Approach for the Mapping and Quantification of Gully Erosion. Catena 2003, 50, 293–308. [Google Scholar] [CrossRef]
- Pandey, A.; Chowdary, V.M.; Mal, B.C. Identification of Critical Erosion Prone Areas in the Small Agricultural Watershed Using USLE, GIS and Remote Sensing. Water Resour. Manag. 2007, 21, 729–746. [Google Scholar] [CrossRef]
- Jain, M.K.; Das, D. Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization Using GIS and Remote Sensing. Water Resour. Manag. 2010, 24, 2091–2112. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L.O. CLUE: A Conceptual Model to Study the Conversion of Land Use and Its Effects. Ecol. Modell. 1996, 85, 253–270. [Google Scholar] [CrossRef]
- Estrany, J.; Garcia, C.; Walling, D.E. An Investigation of Soil Erosion and Redistribution in a Mediterranean Lowland Agricultural Catchment Using Caesium-137. Int. J. Sediment Res. 2010, 25, 1–16. [Google Scholar] [CrossRef]
- van Lynden, G.W.J. European Soil Resources: Current Status of Soil Degradation, Causes, Impacts and Need for Action; Council of Europe Press: Luxembourg, 1995; 99p. [Google Scholar]
- European Commission Soil Thematic Strategy, COM(2006) 231—European Environment Agency. Available online: https://www.eea.europa.eu/policy-documents/soil-thematic-strategy-com-2006-231 (accessed on 19 March 2024).
- Panagos, P.; Christos, K.; Cristiano, B.; Ioannis, G. Seasonal Monitoring of Soil Erosion at Regional Scale: An Application of the G2 Model in Crete Focusing on Agricultural Land Uses. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 147–155. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- López-Vicente, M.; Navas, A.; Gaspar, L.; Machín, J. Advanced Modelling of Runoff and Soil Redistribution for Agricultural Systems: The SERT Model. Agric. Water Manag. 2013, 125, 1–12. [Google Scholar] [CrossRef]
- Eniyew, S.; Teshome, M.; Sisay, E.; Bezabih, T. Integrating RUSLE Model with Remote Sensing and GIS for Evaluation Soil Erosion in Telkwonz Watershed, Northwestern Ethiopia. Remote Sens. Appl. Soc. Environ. 2021, 24, 100623. [Google Scholar] [CrossRef]
- Duarte, L.; Cunha, M.; Teodoro, A.C. Comparing Hydric Erosion Soil Loss Models in Rainy Mountainous and Dry Flat Regions in Portugal. Land 2021, 10, 554. [Google Scholar] [CrossRef]
- Russell, S.; Harmon, W.W.D. (Eds.) Landscape Erosion and Evolution Modeling; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N. Erosion Modeling. In Landscape Erosion and Evolution Modeling; Springer: New York, NY, USA, 2001; pp. 117–143. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J. Predicting Soil Erosion and Sediment Yield at the Basin Scale: Scale Issues and Semi-Quantitative Models. Earth-Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- de Vente, J. Soil Erosion and Sediment Yield in Mediterranean Geoecosystems—Scale Issues, Modelling and Understanding. Ph.D. Thesis, Katholieke Universiteit, Leuven, Belgium, 2009. [Google Scholar]
- Hajigholizadeh, M.; Melesse, A.M.; Fuentes, H.R. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications. Int. J. Environ. Res. Public Health 2018, 15, 518. [Google Scholar] [CrossRef]
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997; No. 703; pp. 65–100.
- Gavrilović, S. Engineering of Torrents and Erosion. J. Constr. 1972, 292. (In Serbian) [Google Scholar]
- Kostadinov, S. Bujični Tokovi i Erozija; Univerzitet u Beogradu, Šumarski Fakultet: Belgrade, Serbia, 2008. (In Serbian) [Google Scholar]
- Vučićević, D. Uređenje Bujičnih Tokova-Priručnik Za Bujičare; Društvo Bujičara Jugoslavije: Belgrade, Serbia, 1995. (In Serbian) [Google Scholar]
- Gavrilović, S. A Method for Estimating the Average Annual Quantity of Sedimentsaccording to the Potency of Erosion. Bull. Fac. For. 1962, 26, 151–168. [Google Scholar]
- Lazarević, R. Erozija u Bosni i Hercegovini; Želnid: Belgrade, Serbia, 2010; ISBN 978-86-7307-216-6. (In Serbian) [Google Scholar]
- Mincev, I. Development of methodology for determination of protection zones around water reservoirs from aspect of soil erosion and sediment transport. Ph.D. Thesis, Ss. Cyril and Methodius University, Skopje, North Macedonia, 2014. [Google Scholar]
- Blinkov, I. Review and Comparison of Water Erosion Intensity in the Western Balkan and EU Countries. Contributions. Sect. Nat. Math. Biotech. Sci. 2015, 36, 27–42. [Google Scholar] [CrossRef]
- Spalević, V.; Ćurović, M.; Billi, P.; Fazzini, M.; Frankl, A.; Nyssen, J. Soil Erosion in the Zim Potok Watershed Polimlje River Basin, Montenegro. In Proceedings of the Agrosym 2014: Book of Proceedings: Fifth International Scientific Agricultural Symposium “Agrosym 2014”, Jahorina, Bosnia and Herzegovina, 23–26 October 2014; CABI: Wallingford, UK, 2014. [Google Scholar]
- Petras, J.; Kuspilic, N.; Kunstek, D. Some Experience on the Prediction of Suspended Sediment Concentrations and Fluxes in Croatia. In Proceedings of the Symposium SI, Seventh IAHS Scientific Assembly, Foz do Igacu, Brazil, 3–9 April 2005; IAHS: Wallingford, UK; 2005; Volume 292, pp. 179–184. [Google Scholar]
- Dragičević, N.; Karleuša, B.; Ožanić, N. A Review of the Gavrilović Method (Erosion Potential Method) Application. Građevinar 2016, 68, 715–725. [Google Scholar] [CrossRef]
- Zemljic, M. Calculation of Sediment Load. Evaluation of Vegetation as Anti-Erosive Factor. In Proceedings of the International Symposium Interpraevent, Villach, Australia; INTERPRAEVENT: Vienna, Austria, 1971; pp. 379–391. [Google Scholar]
- Globevnik, L.; Holjević, D.; Petkovšek, G.; Rubinić, J. Applicability of the Gavrillović Method in Erosion Calculation Using Spatial Data Manipulation Techniques; IAHS-AISH Publication: Wallingford, UK, 2003; pp. 224–233. [Google Scholar]
- Zorn, M.; Komac, B.; Gabrovec, M. Influence of Land Use Changes on Erosion in the Slovenian Alps. In Proceedings of the Man in the Landscape across Frontiers—IGU-LUCC Central Europe Conference 2007, Slovenia, Austria, Slovakia, Czechia, 28 August–4 September 2007. [Google Scholar]
- De Cesare, G.; Beyer Portner, N.; Boillat, J.; Scleiss, A. Modelling of Erosion and Sedimentation Based on Field Investigation in Alpine Reservoirs of Hydropower Schemes; Parallel Session 34; German Coastal Engineering Research Council: Hamburg, Germany, 1998. [Google Scholar]
- de Vente, J.; Poesen, J.; Bazzoffi, P.; Van Rompaey, A.; Verstraeten, G. Predicting Catchment Sediment Yield in Mediterranean Environments: The Importance of Sediment Sources and Connectivity in Italian Drainage Basins. Earth Surf. Process. Landf. 2006, 31, 1017–1034. [Google Scholar] [CrossRef]
- Fanetti, D.; Vezzoli, L. Sediment Input and Evolution of Lacustrine Deltas: The Breggia and Greggio Rivers Case Study (Lake Como, Italy). Quat. Int. 2007, 173–174, 113–124. [Google Scholar] [CrossRef]
- Milanesi, L.; Pilotti, M.; Clerici, A. The Application of the Erosion Potential Method to Alpine Areas: Methodological Improvements and Test Case. In Engineering Geology for Society and Territory–Volume 3: River Basins, Reservoir Sedimentation and Water Resources; Springer: Cham, Switzerland, 2015; pp. 347–350. [Google Scholar] [CrossRef]
- Rafaelli, S.; Peviani, M.; Perez Ayala, F. Study of Sediment Yield on the Mountain Cuence Del Rio Iruya (Argentina). In Proceedings of the IARH AMH, Hydraulic XVIII Latin American Conference, Oaxaca, Mexico; Springer: Berlin/Heidelberg, Germany; 1998.
- Stefanidis, P.; Myronidis, D.; Sapountzis, M.; Stathis, D. The Torrent “Sklitrho” in Florina. In Torrential Environment and Torrent Control System; Scientific Annals; Department of Forestry and Natural Environment, Aristotelian University of Thessaloniki: Thessaloniki, Greece, 1998; Volume 41, p. 1275. [Google Scholar]
- Emmanouloudis, D.; Filippidis, E. A Quantitative Estimation Model of Mountainous Watershed Degradation. In Proceedings of the Kick-Off Workshop on IAHS, Decade of Prediction in Ungauged Basins (PUB), Brasilia, Brazil, 20–22 November 2002. [Google Scholar]
- Emmanouloudis, D.A.; Christou, O.P.; Filippidis, E.I. Quantitative Estimation of Degradation in the Aliakmon River Basin Using GIS; IAHS-AISH Publication: Wallingford, UK, 2003; pp. 234–240. [Google Scholar]
- Kalinderis, I.; Tziaftani, F.; Sapountzis, M.; Kourakli, P.; Stefanidis, P.; Stathis, D. The Risk of Sedimentation of Artificial Lakes, Following the Soil Loss and Degradation Process in the Wider Drainage Basin. Artificial Lake of Smokovo Case Study (Central Greece). In Proceedings of the International Conference LAND CONSERVATION 0905 “Global Change-Challenges for Soil Management from Degradation through Soil and Water Conservation to Sustainable Soil Management, Tara Mountain, Serbia, 26–30 May 2009. refwid:76018. [Google Scholar]
- Cherif, K.; Yahia, N.; Bilal, B.; Bilal, B. Erosion Potential Model-Based ANN-MLP for the Spatiotemporal Modeling of Soil Erosion in Wadi Saida Watershed. Model. Earth Syst. Environ. 2023, 9, 3095–3117. [Google Scholar] [CrossRef]
- Ahmed, A.; Adil, D.; Hasna, B.; Elbachir, A.; Lazaar, R. Using EPM Model and GIS for Estimation of Soil Erosion in Souss Basin, Morocco. Turkish J. Agric.—Food Sci. Technol. 2019, 7, 1228–1232. [Google Scholar] [CrossRef]
- Elbadaoui, K.; Mansour, S.; Ikirri, M.; Abdelrahman, K.; Abu-Alam, T.; Abioui, M. Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco OSEAN-Outermost Regions Sustainable Ecosystem for Entrepreneursh. Land 2023, 12, 837. [Google Scholar] [CrossRef]
- Ali, S.; Al-Umary, F.A.; Salar, S.G.; Al-Ansari, N.; Knutsson, S. GIS Based Soil Erosion Estimation Using EPM Method, Garmiyan Area, Kurdistan Region, Iraq. J. Civ. Eng. Archit. 2016, 10, 291–308. [Google Scholar] [CrossRef]
- Amini, H.; Honarjoo, N.; Jalaliyan, A.; Khalilizadeh, M.; Baharlouie, J. A Comparison of EPM and WEPP Models for Estimating Soil Erosion of Marmeh Watershed in the South Iran. Agric. For. 2014, 60, 299–315. [Google Scholar]
- da Silva, R.M.; Santos, C.A.G.; Silva, A.M. Predicting Soil Erosion and Sediment Yield in the Tapacurá Catchment. J. Urban Environ. Eng. 2014, 8, 75–82. [Google Scholar] [CrossRef]
- Lense, G.H.E.; Parreiras, T.C.; Moreira, R.S.; Avanzi, J.C.; Mincato, R.L. Estimates of Soil Losses by the Erosion Potential Method in Tropical Latosols. Cienc. Agrotecnologia 2019, 43, e012719. [Google Scholar] [CrossRef]
- Kazimierski, L.D.; Irigoyen, M.; Re, M.; Menendez, A.N.; Spalletti, P.; Brea, J.D. Impact of Climate Change on Sediment Yield from the Upper Plata Basin. Int. J. River Basin Manag. 2013, 11, 411–421. [Google Scholar] [CrossRef]
- Otoniel, N.P. Identificación de Correlaciones Entre La Arga de Lavado y Algunos Parámetros Geomorfológicos y de Uso de Suelo En La Cuenca Del Río Cauca; Universidad Nacional de Colombia: Bogotá, Colombia, 2015. [Google Scholar]
- Bezak, N.; Borrelli, P.; Mikoš, M.; Jemec Auflič, M.; Panagos, P. Towards Multi-Model Soil Erosion Modelling: An Evaluation of the Erosion Potential Method (EPM) for Global Soil Erosion Assessments. Catena 2024, 234, 107596. [Google Scholar] [CrossRef]
- Gavrilović, S. Torrents in Serbia; Republic Water Fund and Faculty of Forestry: Belgrade, Serbia, 1975. (In Serbian) [Google Scholar]
- Vrieling, A. Satellite Remote Sensing for Water Erosion Assessment: A Review. Catena 2006, 65, 2–18. [Google Scholar] [CrossRef]
- Đomlija, P.; Gazibara, S.B.; Arbanas, Ž.; Arbanas, S.M. Identification and Mapping of Soil Erosion Processes Using the Visual Interpretation of Lidar Imagery. ISPRS Int. J. Geo-Inf. 2019, 8, 438. [Google Scholar] [CrossRef]
- Deligiannakis, G.; Pallikarakis, A.; Papanikolaou, I.; Alexiou, S.; Reicherter, K. Detecting and Monitoring Early Post-Fire Sliding Phenomena Using Uav–Sfm Photogrammetry and t-Lidar-Derived Point Clouds. Fire 2021, 4, 87. [Google Scholar] [CrossRef]
- Alexiou, S.; Deligiannakis, G.; Pallikarakis, A.; Papanikolaou, I.; Psomiadis, E.; Reicherter, K. Comparing High Accuracy T-Lidar and Uav-Sfm Derived Point Clouds for Geomorphological Change Detection. ISPRS Int. J. Geo-Inf. 2021, 10, 367. [Google Scholar] [CrossRef]
- Alexiou, S.; Papanikolaou, I.; Schneiderwind, S.; Kehrle, V.; Reicherter, K. Monitoring and Quantifying Soil Erosion and Sedimentation Rates in Centimeter Accuracy Using UAV-Photogrammetry, GNSS, and t-LiDAR in a Post-Fire Setting. Remote Sens. 2024, 16, 802. [Google Scholar] [CrossRef]
- Kirchhof, W.; Haberäcker, P.; Krauth, E.; Kritikos, G.; Winter, R. Evaluation of LANDSAT Image Data for Land-Use Mapping. Acta Astronaut. 1980, 7, 243–253. [Google Scholar] [CrossRef]
- Newman, M.E.; McLaren, K.P.; Wilson, B.S. Comparing the Effects of Classification Techniques on Landscape-Level Assessments: Pixel-Based versus Object-Based Classification. Int. J. Remote Sens. 2011, 32, 4055–4073. [Google Scholar] [CrossRef]
- Fisher, P.F.; Pathirana, S. The Evaluation of Fuzzy Membership of Land Cover Classes in the Suburban Zone. Remote Sens. Environ. 1990, 34, 121–132. [Google Scholar] [CrossRef]
- Singh, D.; Herlin, I.; Berroir, J.P.; Silva, E.F.; Meirelles, M.S. An Approach to Correlate NDVI with Soil Colour for Erosion Process Using NOAA/AVHRR Data. Adv. Sp. Res. 2004, 33, 328–332. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-Based Forest Mapping in Steep Mountainous Terrain Using Object-Based Classification. For. Ecol. Manage. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Moskal, L.M.; Styers, D.M.; Halabisky, M. Remote Sensing Monitoring Urban Tree Cover Using Object-Based Image Analysis and Public Domain Remotely Sensed Data. Remote Sens. 2011, 3, 2243. [Google Scholar] [CrossRef]
- Shruthi, R.B.V.; Kerle, N.; Jetten, V.; Abdellah, L.; Machmach, I. Quantifying Temporal Changes in Gully Erosion Areas with Object Oriented Analysis. Catena 2015, 128, 262–277. [Google Scholar] [CrossRef]
- Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluating the Influence of Geo-Environmental Factors on Gully Erosion in a Semi-Arid Region of Iran: An Integrated Framework. Sci. Total Environ. 2017, 579, 913–927. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Pourghasemi, H.R.; Besalatpour, A.A.; Conoscenti, C.; Van Oost, K. Comparison of Differences in Resolution and Sources of Controlling Factors for Gully Erosion Susceptibility Mapping. Geoderma 2018, 330, 65–78. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, D.; Li, G.; Huang, J.; Sinha, N.; Zhi, J.; Li, S. A Random Forest-Based Approach to Map Soil Erosion Risk Distribution in Hickory Plantations in Western Zhejiang Province, China. Remote Sens. 2018, 10, 1899. [Google Scholar] [CrossRef]
- Bammou, Y.; Benzougagh, B.; Abdessalam, O.; Brahim, I.; Kader, S.; Spalevic, V.; Sestras, P.; Ercişli, S. Machine Learning Models for Gully Erosion Susceptibility Assessment in the Tensift Catchment, Haouz Plain, Morocco for Sustainable Development. J. Afr. Earth Sci. 2024, 213, 105229. [Google Scholar] [CrossRef]
- Xu, H.; Hu, X.; Guan, H.; Zhang, B.; Wang, M.; Chen, S.; Chen, M. A Remote Sensing Based Method to Detect Soil Erosion in Forests. Remote Sens. 2019, 11, 513. [Google Scholar] [CrossRef]
- Ristić, R.; Solomun, M.K.; Malušević, I.; Ždrale, S.; Radić, B.; Polovina, S.; Milćanović, V. Healthy Soils—Healthy People: Soil and Human Health—The Reality of the Balkan Region. In The Soil-Human Health-Nexus, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 223–248. [Google Scholar] [CrossRef]
- UNEP. United Nations Environmental Programme Sarajevo Action Program for Combat Land Degradation and Mitigate the Effects of Drought in Bosnia and Herzegovina; GEF: Sarajevo, Bosnia and Herzegovina, 2017. [Google Scholar]
- CORINE. Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 19 March 2024).
- Law, M.; Collins, A. Getting to Know ArcGIS Desktop 10.8; Esri Press: Redlands, CA, USA, 2021; ISBN 9781589485785. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- GEE. Google Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog/landsat (accessed on 24 May 2024).
- Rikimaru, A.; Roy, P.; Miyatake, S. Tropical Forest Cover Density Mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Nguyen, C.T.; Chidthaisong, A.; Diem, P.K.; Huo, L.Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [Google Scholar] [CrossRef]
- Rogers, A.S.; Kearney, M.S. Reducing Signature Variability in Unmixing Coastal Marsh Thematic Mapper Scenes Using Spectral Indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Azizi, Z.; Najafi, A.; Sohrabi, H. Forest Canopy Density Estimating, Using Satellite Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2008, 27, 1127–1130. [Google Scholar] [CrossRef]
- Piyoosh, A.K.; Ghosh, S.K. Development of a Modified Bare Soil and Urban Index for Landsat 8 Satellite Data. Geocarto Int. 2018, 33, 423–442. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Ibrahim, G.R.F.; Hameed, H.M.; Wheeler, J.; Adamu, B.; Ibrahim, S.; Najmaddin, P.M. Applying Built-up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land 2018, 7, 81. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, C.; Li, M.; Chen, R. RNDSI: A Ratio Normalized Difference Soil Index for Remote Sensing of Urban/Suburban Environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 40–48. [Google Scholar] [CrossRef]
- Quemada, M.; Daughtry, C.S.T. Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions. Remote Sens. 2016, 8, 660. [Google Scholar] [CrossRef]
- Sonmez, N.K.; Slater, B. Measuring Intensity of Tillage and Plant Residue Cover Using Remote Sensing. Eur. J. Remote Sens. 2016, 49, 121–135. [Google Scholar] [CrossRef]
- Samira, D.; Souiher, N.; Djamal, B. Extraction of Urban Areas Using Spectral Indices Combination and Google Earth Engine in Algerian Highlands (Case Study: Cities of Djelfa, Messaad, Ain Oussera). Anu. do Inst. Geocienc. 2022, 45, 44537. [Google Scholar] [CrossRef]
- Wentzel, K. Determination of the Overall Soil Erosion Potential in the Nsikazi District (Mpumalanga Province, South Africa) Using Remote Sensing and GIS. Can. J. Remote Sens. 2002, 28, 322–327. [Google Scholar] [CrossRef]
- Panahi, H.; Azizi, Z.; Kiadaliri, H.; Almodaresi, S.A.; Aghamohamadi, H. Bare Soil Detecting Algorithms in Western Iran Woodlands Using Remote Sensing. Smart Agric. Technol. 2024, 7, 100429. [Google Scholar] [CrossRef]
- Diek, S.; Schaepman, M.E.; De Jong, R. Remote Sensing Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping. Remote Sens. 2016, 8, 906. [Google Scholar] [CrossRef]
- Polovina, S. Comparison of Methods for Quantifying Erosion Processes Intensity: A Case Study of the Belgrade Master Plan Area. Ph.D. Dissertation, Faculty of Forestry, University of Belgrade,, Belgrade, Serbia, 2022. (In Serbian). [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for Use in Numerical Weather Prediction Models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classification of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Guoqing, S.; Ren, Y.S. Development and Test of an Error Model for Categorical Data. Int. J. Geogr. Inf. Syst. 1992, 6, 87–104. [Google Scholar] [CrossRef]
- Paine, D.P.; Kiser, J.D. Aerial Photography and Image Interpretation, 2nd ed.; John Wiley, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Khorram, S.; van der Wiele, C.F.; Koch, F.H.; Nelson, S.A.C.; Potts, M.D. Principles of Applied Remote Sensing; Springer: Cham, Switzerland, 2016; pp. 1–307. [Google Scholar] [CrossRef]
- Levin, N. Fundamentals of Remote Sensing; Remote Sensing Laboratory, Geography Department, Tel Aviv University: Tel Aviv, Israel, 1999. [Google Scholar]
- Tempfli, K.; Huurneman, G.C.; Bakker, W.H.; Janssen, L.L.F.; Feringa, W.F.; Gieske, A.S.M.; Grabmaier, K.A.; Hecker, C.A.; Horn, J.A.; Kerle, N.; et al. Principles of Remote Sensing: An Introductory Textbook, 4th ed.; Tempfli, K., Kerle, N., Huurneman, G.C., Janssen, L.L.F., Eds.; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2009; ISBN 978-90-6164-270-1. [Google Scholar]
- Radić, B. Erosion as Factor of Landscape Degradation in Serbian Ski-Resorts. Ph.D. Dissertation, Faculty of Forestry, University of Belgrade, Belgrade, Serbia, 2014. (In Serbian). [Google Scholar]
- Dobrota, M.M. Statistički Pristup Definisanju Zone Osetljivosti u Metodama Daljinskog Uzorkovanja (A Statistical Approach to Sensitivity Zone Definition in Remote Sensing Methods). Ph.D. Dissertation, Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia, 2018. (In Serbian). [Google Scholar]
- Abdi, A.M. Land Cover and Land Use Classification Performance of Machine Learning Algorithms in a Boreal Landscape Using Sentinel-2 Data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 19 March 2024).
Erosion Category | Intensity of Erosion Processes | Dominant Erosion Type | Erosion Coefficient Z | Mean Value of Z |
---|---|---|---|---|
I | Excessive erosion | Deep | >1.51 | 1.25 |
Mixed | 1.21–1.50 | |||
Surface | 1.01–1.20 | |||
II | Severe erosion | Deep | 0.91–1.00 | 0.85 |
Mixed | 0.81–0.90 | |||
Surface | 0.71–0.80 | |||
III | Medium erosion | Deep | 0.61–0.70 | 0.55 |
Mixed | 0.51–0.60 | |||
Surface | 0.41–0.50 | |||
IV | Slight erosion | Deep | 0.31–0.40 | 0.30 |
Mixed | 0.25–0.30 | |||
Surface | 0.20–0.24 | |||
V | Very slight erosion | Traces of erosion | 0.01–0.19 | 0.10 |
φ Description—Type and Extent of Erosion and Slumps | φ Value |
---|---|
Watershed completely under gully erosion and primordial processes (deepening, incision, slumps) | 1.0 |
About 80% of the watershed is under furrow and gully erosion | 0.9 |
About 50% of the watershed is under furrow and gully erosion | 0.8 |
The entire watershed is subject to surface erosion: disintegrated debris from embankments, some furrows, and gullies, as well as strong karst erosion | 0.7 |
The entire watershed is under surface erosion but without furrows and gullies (deep processes) and the like | 0.6 |
Land with 50% of the area covered by surface erosion, while the rest of the watershed is preserved | 0.5 |
Land with 20% of the area covered by surface erosion, while 80% of the watershed is preserved | 0.3 |
The soil in the watershed has no visible signs of erosion, but there are minor slips and slides in watercourses | 0.2 |
Watershed without visible signs of erosion, but mostly under arable land | 0.15 |
An area without visible signs of erosion, both in the watershed and in the watercourses, but predominantly under forests and perennial vegetation (meadows, pastures, etc.) | 0.1 |
Value of Coefficient φ | The Number of Samples for Validation. |
---|---|
0.1 | 8 |
0.15 | 8 |
0.2 | 2 |
0.3 | 11 |
0.5 | 68 |
0.6 | 43 |
0.7 | 28 |
0.8 | 12 |
0.9 | 9 |
1.0 | 1 |
Total | 190 |
Reference Values of the Coefficient φ from the Field | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient φ | 0.1 | 0.15 | 0.2 | 0.3 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | Total | UA (%) | |
Values of the coefficient φ based on remote sensing | 0.1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 100 |
0.15 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 100 | |
0.2 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 33.33 | |
0.3 | 0 | 0 | 0 | 8 | 3 | 0 | 0 | 0 | 0 | 0 | 11 | 72.73 | |
0.5 | 0 | 0 | 1 | 1 | 60 | 2 | 1 | 0 | 0 | 0 | 65 | 92.31 | |
0.6 | 0 | 0 | 0 | 0 | 4 | 37 | 1 | 0 | 0 | 0 | 42 | 88.10 | |
0.7 | 0 | 0 | 0 | 0 | 1 | 4 | 19 | 0 | 0 | 0 | 24 | 79.17 | |
0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 12 | 0 | 0 | 19 | 63.16 | |
0.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 100 | |
1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 100 | |
Total | 8 | 8 | 2 | 11 | 68 | 43 | 28 | 12 | 9 | 1 | 190 | OA (%) 85.79 | |
PA (%) | 100 | 100 | 50 | 72.73 | 88.24 | 86.05 | 67.86 | 100 | 100 | 100 | Kappa 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polovina, S.; Radić, B.; Ristić, R.; Milčanović, V. Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model. Remote Sens. 2024, 16, 2390. https://doi.org/10.3390/rs16132390
Polovina S, Radić B, Ristić R, Milčanović V. Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model. Remote Sensing. 2024; 16(13):2390. https://doi.org/10.3390/rs16132390
Chicago/Turabian StylePolovina, Siniša, Boris Radić, Ratko Ristić, and Vukašin Milčanović. 2024. "Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model" Remote Sensing 16, no. 13: 2390. https://doi.org/10.3390/rs16132390
APA StylePolovina, S., Radić, B., Ristić, R., & Milčanović, V. (2024). Application of Remote Sensing for Identifying Soil Erosion Processes on a Regional Scale: An Innovative Approach to Enhance the Erosion Potential Model. Remote Sensing, 16(13), 2390. https://doi.org/10.3390/rs16132390