Adapting Prediction Models to Bare Soil Fractional Cover for Extending Topsoil Clay Content Mapping Based on AVIRIS-NG Hyperspectral Data
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Soil Sample Collection and Clay Content Measurements
2.3. AVIRIS-NG Hyperspectral Data
3. Methods
3.1. Spectral Unmixing for Bare Soil Fractional Cover Estimation
3.2. PLSR Model
3.3. Dataset Preparation for PLSR Training and Validation
3.4. Bootstrap Process
3.5. Performance Evaluation
3.6. Clay Content Composite Mapping
4. Results
4.1. Bare Soil Fractional Cover Class Map
4.2. Effect of Bare Soil Fractional Cover on Clay Content Estimation
4.3. Clay Content Composite Map and Associated Uncertainties Map
5. Discussion
5.1. Bare Soil Fractional Cover Estimation from Spectral Unmixing
5.2. Model Performance over the Highest Bare Soil Fractional Cover
5.3. Model Performances Depending on Bare Soil Fractional Cover
5.4. Clay Content Composite Mapping Approach
5.5. Comparison with Other Approaches to Extend Predictions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulder, V.L.; De Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Brown, R.B. Soil Texture [Fact Sheet]; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2003. [Google Scholar]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
- Chabrillat, S.; Goetz, A.F.; Krosley, L.; Olsen, H.W. Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens. Environ. 2002, 82, 431–445. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 2008, 148, 141–148. [Google Scholar] [CrossRef]
- Lagacherie, P.; Baret, F.; Feret, J.B.; Netto, J.M.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Casa, R.; Castaldi, F.; Pascucci, S.; Palombo, A.; Pignatti, S. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma 2013, 197, 17–26. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Nouri, M.; Gomez, C.; Gorretta, N.; Roger, J.M. Clay content mapping from airborne hyperspectral Vis-NIR data by transferring a laboratory regression model. Geoderma 2017, 298, 54–66. [Google Scholar] [CrossRef]
- Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A. On the feasibility of characterizing soil properties from aviris data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5133–5147. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Buchroithner, M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery. Sensors 2018, 18, 3169. [Google Scholar] [CrossRef] [PubMed]
- Bellinaso, H.; Silvero, N.E.; Ruiz, L.F.C.; Amorim, M.T.A.; Rosin, N.A.; de Sousa, M.W.; de Sousa, G.P.B.; Sepulveda, L.M.A.; de Queiroz, L.G.; Nanni, M.R.; et al. Clay content prediction using spectra data collected from the ground to space platforms in a smallholder tropical area. Geoderma 2021, 399, 115116. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Huete, A.R.; Ferreira, L.G.; Nanni, M.R.; Alves, M.C.; Fiorio, P.R. Methodology for bare soil detection and discrimination by Landsat TM Image. Open Remote Sens. J. 2009, 2, 24–35. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, 110–122. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Kooistra, L.; Stevens, A.; van Leeuwen, M.; van Wesemael, B.; Ben-Dor, E.; Tychon, B. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 81–88. [Google Scholar] [CrossRef]
- Ouerghemmi, W.; Gomez, C.; Naceur, S.; Lagacherie, P. Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces. Geoderma 2011, 163, 227–237. [Google Scholar] [CrossRef]
- Ouerghemmi, W.; Gomez, C.; Naceur, S.; Lagacherie, P. Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using VNIR/SWIR hyperspectral airborne data. Remote Sens. Environ. 2016, 181, 251–263. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Demattê, J.A.M.; da Silva, T.F.; Vicente, L.E.; Bartholomeus, H.; de Souza, F.C.R. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 358–370. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest pixel composite for agricultural areas using Landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; Elfil, H. Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches. Remote Sens. 2022, 14, 1103. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-de-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.; Martin, M.P.; Vaudour, E. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Gallo, B.C.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.D.S.; Lepsch, I.F.; Sato, M.V.; Romero, D.J.; Lacerda, M.P. Multi-temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; Mendes, W.D.S.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; Mello, F.A.D.O.; et al. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Chabrillat, S.; Ben-Dor, E.; Demattê, J.A.M. Multispectral models from bare soil composites for mapping topsoil properties over Europe. Remote Sens. 2020, 12, 1369. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; de Sousa, M.W.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Shirtliffe, S.J.; Bedard-Haughn, A.K. Predictive soil mapping using historic bare soil composite imagery and legacy soil survey data. Geoderma 2021, 401, 115316. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Möller, M.; Wiesmeier, M.; van Wesemael, B. Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat. ISPRS J. Photogramm. Remote Sens. 2023, 202, 287–302. [Google Scholar] [CrossRef]
- Urbina-Salazar, D.; Vaudour, E.; Richer-de-Forges, A.C.; Chen, S.; Martelet, G.; Baghdadi, N.; Arrouays, D. Sentinel-2 and Sentinel-1 Bare Soil Temporal Mosaics of 6-year Periods for Soil Organic Carbon Content Mapping in Central France. Remote Sens. 2023, 15, 2410. [Google Scholar] [CrossRef]
- Castaldi, F.; Koparan, M.H.; Wetterlind, J.; Žydelis, R.; Vinci, I.; Savaş, A.Ö.; Vaudour, E. Assessing the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in croplands. ISPRS J. Photogramm. Remote Sens. 2023, 199, 40–60. [Google Scholar] [CrossRef]
- Tomer, S.K.; Al Bitar, A.; Sekhar, M.; Zribi, M.; Bandyopadhyay, S.; Sreelash, K.; Sharma, A.K.; Corgne, S.; Kerr, Y. Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a semi-arid tropical region. Remote Sens. 2015, 7, 8128–8153. [Google Scholar] [CrossRef]
- Sekhar, M.; Riotte, J.; Ruiz, L.; Jouquet, P.; Braun, J.J. Influences of climate and agriculture on water and biogeochemical cycles: Kabini critical zone observatory. Proc. Indian Natl. Sci. Acad. 2016, 82, 833–846. [Google Scholar] [CrossRef]
- Gaillardet, J.; Braud, I.; Hankard, F.; Anquetin, S.; Bour, O.; Dorfliger, N.; de Dreuzy, J.R.; Galle, S.; Galy, C.; Gogo, S.; et al. OZCAR: The French network of critical zone observatories. Vadose Zone J. 2018, 17, 1–24. [Google Scholar] [CrossRef]
- Robert, M.; Thomas, A.; Sekhar, M.; Badiger, S.; Ruiz, L.; Willaume, M.; Leenhardt, D.; Bergez, J.E. Farm typology in the Berambadi Watershed (India): Farming systems are determined by farm size and access to groundwater. Water 2017, 9, 51. [Google Scholar] [CrossRef]
- Barbiero, L.; Parate, H.R.; Descloitres, M.; Bost, A.; Furian, S.; Kumar, M.M.; Kumar, C.; Braun, J.J. Using a structural approach to identify relationships between soil and erosion in a semi-humid forested area, South India. Catena 2007, 70, 313–329. [Google Scholar] [CrossRef]
- Gomez, C.; Dharumarajan, S.; Lagacherie, P.; Riotte, J.; Ferrant, S.; Sekhar, M.; Ruiz, L. Mapping of tank silt application using Sentinel-2 images over the Berambadi catchment (India). Geoderma Reg. 2021, 25, e00389. [Google Scholar] [CrossRef]
- Lagacherie, P.; Gomez, C. Vis-NIR-SWIR remote sensing products as new soil data for digital soil mapping. In Pedometrics; McBratney, A.B., Minasny, B., Stockmann, U., Eds.; Springer: Cham, Switzerland, 2018; pp. 415–437. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—A case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062. [Google Scholar] [CrossRef]
- Gomez, C.; Oltra-Carrió, R.; Bacha, S.; Lagacherie, P.; Briottet, X. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery. Remote Sens. Environ. 2015, 164, 1–15. [Google Scholar] [CrossRef]
- Robinson, G.W. A new method for the mechanical analysis of soils and other dispersions. J. Agric. Sci. 1992, 12, 306–321. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. 2.4 Particle-size analysis. In Methods of Soil Analysis, Part 4: Physical Methods; Dane, J.H., Top, C.G., Eds.; John Wiley and Sons: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar] [CrossRef]
- George, E.B.; Gomez, C.; Nagesh Kumar, D.; Dharumarajan, S.; Lalitha, M. Impact of bare soil pixels identification on clay content mapping using airborne hyperspectral AVIRIS-NG data: Spectral Indices versus Spectral Unmixing. Geocarto Int. 2022, 37, 15912–15934. [Google Scholar] [CrossRef]
- Bhattacharya, B.K.; Green, R.O.; Rao, S.; Saxena, M.; Sharma, S.; Kumar, K.A.; Srinivasulu, P.; Sharma, S.; Dhar, D.; Bandyopadhyay, S.; et al. An overview of AVIRIS-NG airborne hyperspectral science campaign over India. Curr. Sci. 2019, 116, 1082–1088. [Google Scholar] [CrossRef]
- Hamlin, L.; Green, R.O.; Mouroulis, P.; Eastwood, M.; Wilson, D.; Dudik, M.; Paine, C. Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments. In Proceedings of the 2011 Aerospace Conference, Washington, DC, USA, 5–12 March 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Thorpe, A.K.; Frankenberg, C.; Aubrey, A.D.; Roberts, D.A.; Nottrott, A.A.; Rahn, T.A.; Sauer, J.A.; Dubey, M.K.; Costigan, K.R.; Arata, C.; et al. Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG). Remote Sens. Environ. 2016, 179, 104–115. [Google Scholar] [CrossRef]
- Gao, B.C.; Heidebrecht, K.B.; Goetz, A.F. Derivation of scaled surface reflectances from AVIRIS data. Remote Sens. Environ. 1993, 44, 165–178. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Heinz, D.C.; Chang, C.I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef]
- Chi, J.; Crawford, M.M. Spectral unmixing-based crop residue estimation using hyperspectral remote sensing data: A case study at Purdue university. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2531–2539. [Google Scholar] [CrossRef]
- Plaza, A.; Martínez, P.; Pérez, R.; Plaza, J. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 650–663. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Peón, J.; Recondo, C.; Fernández, S.F.; Calleja, J.; De Miguel, E.; Carretero, L. Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery. Remote Sens. 2017, 9, 1211. [Google Scholar] [CrossRef]
- Ward, K.J.; Chabrillat, S.; Brell, M.; Castaldi, F.; Spengler, D.; Foerster, S. Mapping soil organic carbon for airborne and simulated EnMAP imagery using the LUCAS soil database and a Local PLSR. Remote Sens. 2020, 12, 3451. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Mark, H.L.; Tunnell, D. Qualitative near-infrared reflectance analysis using Mahalanobis distances. Anal. Chem. 1985, 57, 1449–1456. [Google Scholar] [CrossRef]
- Mendes, W.D.S.; Boechat, C.L.; Gualberto, A.V.S.; Barbosa, R.S.; Silva, Y.J.A.B.D.; Saraiva, P.C.; Sena, A.F.S.D.; Duarte, L.D.S.L. Soil spectral library of Piauí State using machine learning for laboratory analysis in Northeastern Brazil. Rev. Bras. Ciência Solo 2021, 45, e0200115. [Google Scholar] [CrossRef]
- Cambou, A.; Barthès, B.G.; Moulin, P.; Chauvin, L.; Masse, D.; Chevallier, T.; Chapuis-Lardy, L. Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in Sine Saloum (Senegal). Catena 2022, 212, 106075. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; Hicks, W.S. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Vaudour, E.; Gilliot, J.M.; Bel, L.; Lefevre, J.; Chehdi, K. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 24–38. [Google Scholar] [CrossRef]
- Gomez, C.; Dharumarajan, S.; Féret, J.B.; Lagacherie, P.; Ruiz, L.; Sekhar, M. Use of sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: Case of soil texture mapping. Remote Sens. 2019, 11, 565. [Google Scholar] [CrossRef]
- Roberts, D.A.; Batista, G.T.; Pereira, J.L.G.; Waller, E.; Nelson, B.W. Change identification using multitemporal spectral mixture analysis: Applications in eastern Amazonia. In Remote Sensing Change Detection: Environmental Monitoring Methods and Applications; Lunetta, R.S., Elvidge, C.D., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1998; pp. 137–161. [Google Scholar]
- Drumetz, L.; Tochon, G.; Chanussot, J.; Jutten, C. Estimating the number of endmembers to use in spectral unmixing of hyperspectral data with collaborative sparsity. In Proceedings of the 13th International Conference on Latent Variable Analysis and Signal Separation, Grenoble, France, 21–23 February 2017; Tichavsky, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N., Eds.; Springer: Cham, Switzerland, 2017; pp. 381–391. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modelling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil organic carbon mapping from remote sensing: The effect of crop residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H.; Laamrani, A.; Chehbouni, A. Mean spectral reflectance from bare soil pixels along a Landsat-TM time series to increase both the prediction accuracy of soil clay content and mapping coverage. Geoderma 2021, 388, 114864. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Brodský, L.; Vašát, R.; Klement, A.; Zádorová, T.; Jakšík, O. Uncertainty propagation in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma 2013, 199, 54–63. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Wu, C.Y.; Jacobson, A.R.; Laba, M.; Baveye, P.C. Accounting for surface roughness effects in the near-infrared reflectance sensing of soils. Geoderma 2009, 152, 171–180. [Google Scholar] [CrossRef]
- Denis, A.; Stevens, A.; van Wesemael, B.; Udelhoven, T.; Tychon, B. Soil organic carbon assessment by field and airborne spectrometry in bare croplands: Accounting for soil surface roughness. Geoderma 2014, 226–227, 94–102. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Alves, M.R.; Terra, F.D.S.; Bosquilia, R.W.D.; Fongaro, C.T.; Barros, P.P.D.S. Is it possible to classify topsoil texture using a sensor located 800 km away from the surface? Rev. Bras. Ciência Solo 2016, 40. [Google Scholar] [CrossRef]
- Diek, S.; Schaepman, M.E.; De Jong, R. Creating multi-temporal composites of airborne imaging spectroscopy data in support of digital soil mapping. Remote Sens. 2016, 8, 906. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from Sentinel-2 for Croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef]
- Loizzo, R.; Daraio, M.; Guarini, R.; Longo, F.; Lorusso, R.; Dini, L.; Lopinto, E. Prisma mission status and perspective. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019, Yokohama, Japan, July 28–2 August 2019; IEEE: Yokohama, Japan, 2019; pp. 4503–4506. [Google Scholar] [CrossRef]
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens. Environ. 2015, 167, 6–19. [Google Scholar] [CrossRef]
- Matsunaga, T.; Iwasaki, A.; Tsuchida, S.; Iwao, K.; Tanii, J.; Kashimura, O.; Nakamura, R.; Yamamoto, H.; Kato, S.; Obata, K.; et al. Current status of hyperspectral imager suite (HISUI) onboard International Space Station (ISS). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017), Worth, TX, USA, 23–28 July 2017; pp. 443–446. [Google Scholar] [CrossRef]
- Kaufmann, H.; Segl, K.; Guanter, L.; Hofer, S.; Foerster, K.P.; Stuffler, T.; Mueller, A.; Richter, R.; Bach, H.; Hostert, P.; et al. Environmental mapping and analysis program (EnMAP)—Recent advances and status. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, Boston, MA, USA, 7–11 July 2008; IEEE: Boston, MA, USA, 2008; pp. 109–112. [Google Scholar] [CrossRef]
Bare Soil Fractional Cover | Class (Cp) | Number of Available Soil Samples | Area (%) |
---|---|---|---|
0.30–0.35 | C1 | 17 | 7.3 |
0.35–0.40 | C2 | 18 | 7.4 |
0.40–0.45 | C3 | 20 | 6.9 |
0.45–0.50 | C4 | 14 | 5.9 |
0.50–0.55 | C5 | 13 | 4.9 |
0.55–0.60 | C6 | 14 | 3.9 |
0.60–0.65 | C7 | 8 | 3.2 |
0.65–0.70 | C8 | 17 | 2.8 |
0.70–1.00 | C9 | 46 | 10.4 |
0.30–1.00 | 167 | 52.7 |
Dataset (DBp) | Bare Soil Fractional Cover Threshold (Tp) | Number of Available Samples (NDBp) | Minimum Clay Content (%) | Maximum Clay Content (%) | Mean Clay Content (%) | Standard Deviation of Clay Content (%) | |
---|---|---|---|---|---|---|---|
DB1 | T1 | >0.30 | 167 | 5.81 | 59.61 | 26.21 | 12.72 |
DB2 | T2 | >0.35 | 150 | 5.83 | 59.61 | 25.70 | 12.53 |
DB3 | T3 | >0.40 | 132 | 5.83 | 59.61 | 26.10 | 12.61 |
DB4 | T4 | >0.45 | 112 | 5.83 | 59.61 | 26.70 | 12.50 |
DB5 | T5 | >0.50 | 98 | 5.83 | 59.61 | 27.12 | 12.43 |
DB6 | T6 | >0.55 | 85 | 6.96 | 58.91 | 26.60 | 11.47 |
DB7 | T7 | >0.60 | 71 | 6.96 | 49.04 | 26.01 | 11.16 |
DB8 | T8 | >0.65 | 63 | 6.96 | 49.04 | 25.48 | 10.99 |
DB9 | T9 | >0.70 | 46 | 6.96 | 47.30 | 24.91 | 9.88 |
Bare Soil Fractional Cover | Dataset (DBp) | PLSR Model (Mp) | Ncal | Nval | Validation (Mean ± Standard Deviation over 100 Iterations) | |
---|---|---|---|---|---|---|
RMSEP (%) | ||||||
>0.30 | DB1 | M1 | 36 | 10 | 0.46 ± 0.22 | 9.27 ± 2.00 |
>0.35 | DB2 | M2 | 36 | 10 | 0.47 ± 0.20 | 9.16 ± 2.23 |
>0.40 | DB3 | M3 | 36 | 10 | 0.49 ± 0.20 | 9.01 ± 1.90 |
>0.45 | DB4 | M4 | 36 | 10 | 0.49 ± 0.19 | 9.04 ± 1.95 |
>0.50 | DB5 | M5 | 36 | 10 | 0.50 ± 0.19 | 8.63 ± 1.69 |
>0.55 | DB6 | M6 | 36 | 10 | 0.50 ± 0.19 | 8.04 ± 1.90 |
>0.60 | DB7 | M7 | 36 | 10 | 0.52 ± 0.18 | 7.53 ± 1.51 |
>0.65 | DB8 | M8 | 36 | 10 | 0.59 ± 0.17 | 7.00 ± 1.41 |
>0.70 | DB9 | M9 * | 36 | 10 | 0.63 ± 0.13 | 6.13 ± 1.09 |
Bare Soil Fractional Cover | Dataset (DBp) | PLSR Model (Mall_p) | Ncal_all_p | Nval | Validation (Mean ± Standard Deviation over 100 Iterations) | |
---|---|---|---|---|---|---|
RMSEP (%) | ||||||
>0.30 | DB1 | Mall_1 | 157 | 10 | 0.53 ± 0.20 | 8.30 ± 1.96 |
>0.35 | DB2 | Mall_2 | 140 | 10 | 0.54 ± 0.21 | 8.20 ± 2.00 |
>0.40 | DB3 | Mall_3 | 122 | 10 | 0.54 ± 0.18 | 8.19 ± 1.78 |
>0.45 | DB4 | Mall_4 | 102 | 10 | 0.53 ± 0.19 | 8.19 ± 1.72 |
>0.50 | DB5 | Mall_5 | 88 | 10 | 0.53 ± 0.21 | 7.90 ± 1.86 |
>0.55 | DB6 | Mall_6 | 75 | 10 | 0.55 ± 0.17 | 7.26 ± 1.72 |
>0.60 | DB7 | Mall_7 | 61 | 10 | 0.59 ± 0.14 | 6.97 ± 1.29 |
>0.65 | DB8 | Mall_8 | 53 | 10 | 0.61 ± 0.16 | 6.50 ± 1.37 |
>0.70 | DB9 | Mall_9 * | 36 | 10 | 0.63 ± 0.13 | 6.13 ± 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, E.B.; Gomez, C.; Kumar, N.D. Adapting Prediction Models to Bare Soil Fractional Cover for Extending Topsoil Clay Content Mapping Based on AVIRIS-NG Hyperspectral Data. Remote Sens. 2024, 16, 1066. https://doi.org/10.3390/rs16061066
George EB, Gomez C, Kumar ND. Adapting Prediction Models to Bare Soil Fractional Cover for Extending Topsoil Clay Content Mapping Based on AVIRIS-NG Hyperspectral Data. Remote Sensing. 2024; 16(6):1066. https://doi.org/10.3390/rs16061066
Chicago/Turabian StyleGeorge, Elizabeth Baby, Cécile Gomez, and Nagesh D. Kumar. 2024. "Adapting Prediction Models to Bare Soil Fractional Cover for Extending Topsoil Clay Content Mapping Based on AVIRIS-NG Hyperspectral Data" Remote Sensing 16, no. 6: 1066. https://doi.org/10.3390/rs16061066
APA StyleGeorge, E. B., Gomez, C., & Kumar, N. D. (2024). Adapting Prediction Models to Bare Soil Fractional Cover for Extending Topsoil Clay Content Mapping Based on AVIRIS-NG Hyperspectral Data. Remote Sensing, 16(6), 1066. https://doi.org/10.3390/rs16061066