Effects of Assimilating Ground-Based Microwave Radiometer and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting
Abstract
:1. Introduction
2. Datasets and Preprocessing
2.1. Ground-Based Microwave Radiometer and Preprocessing
2.2. FY-3D MWTS-2/MWHS-2 and Preprocessing
2.2.1. FY-3D MWTS-2/MWHS-2
2.2.2. Quality Control
- (1)
- Observations with MWTS-2 brightness temperature less than 50 K and greater than 350 K are excluded, and the observations with MWHS-2 brightness temperature less than 90 K and greater than 340 K are excluded. Values that are too small or too large are not normal observations.
- (2)
- Eliminate all observation data that contain mixed surface types, including mixed surface observations of ocean, sea ice, land, and snow.
- (3)
- The zenith angle at the edges of the scan lines of the microwave detector is larger, resulting in a longer atmospheric radiation path and consequently lower observed radiance values. Therefore, observations from the five scanning points on both the left and right sides of each scan line of MWTS-2 are eliminated, as well as observations from the six scanning points on both the left and right sides of each scan line of MWHS-2.
- (4)
- Eliminate observations with residuals (observation minus background, O-B) exceeding three times the standard deviation of the residual values.
- (5)
- Eliminate channel observations for viewpoints located in cloudy areas. The method for cloud detection is based on cloud detection products from the moderate resolution spectral imager (MERSI) on the same satellite. By matching the field of view angles of the two types of data, if the average cloud cover within the instantaneous field of view of the microwave detector is greater than 76% [42], then that viewpoint is considered a cloudy area.
- (6)
- Considering the impact of surface factors and the limitations of model altitude, the assimilation experiment selects MWTS-2 channels 4 to 9 and MWHS-2 channels 11 to 13 and channel 15, excluding the window region and upper atmosphere. Channel 14 of MWHS-2 is not selected due to its significant errors [43].
- (7)
- To minimize potential correlations between adjacent radiance observations, the MWTS-2/MWHS-2 radiance data are thinned on a 45 km grid.
2.2.3. Bias Correction
2.2.4. Retrieval of Satellite Emissivity in the Cloud Region
3. Experiment Description and Model Configurations
3.1. Brief Description of Precipitation Case
3.2. Model Configurations
3.3. Batch Experiments
4. Results
4.1. Analysis of Assimilation Data
4.2. Impact on Analysis Increment
4.3. Impact on Forecasts
4.3.1. Temperature Prediction Field
4.3.2. Humidity Prediction Field
4.3.3. Precipitation Forecast
4.4. Prediction Results of Batch Experiment
5. Conclusions
- (1)
- The utilization of retrieval methods for cloud observation increases the utilization rate of satellite data. Analysis increment indicates that both clear-sky radiance data from MWTS-2/MWHS-2 and temperature and humidity profiles retrieved from cloudy regions contribute to the improvement of the analysis field. The conventional observations’ effects are not significant, the ground-based microwave radiometer data mainly affect the Beijing region, while the FY-3D data can impact the entire experimental area. This reflects that the ground-based microwave radiometer and FY3D data can compensate for the inadequacy of conventional observations.
- (2)
- Compared with the CTRL experiments, the other three sets of experiments show a slight improvement in forecasting precipitation from the single-case experiment. In the 6 h accumulated precipitation, the MWR_FY experiment improves the TS by 38.2% and 54.4% at the 25 mm and 50 mm levels, respectively, compared with the CTRL experiment. The ground-based microwave radiometer and MWTS-2/MWHS-2 data exhibit effective adjustment on the thermal structure of the analysis field, which is one of the reasons to improve the accuracy of precipitation forecasting. For this rainfall case, the forecasting of the joint assimilation is closest to the actual observations.
- (3)
- From the results of the temperature and humidity forecasts of the batch experiments, it is clear that the ground-based microwave radiometer and MWTS-2/MWHS-2 have an improving effect at heights above the upper-middle troposphere, and that the joint assimilation of the two types of observations has relatively the best improving effect among the experiments. However, there is a slightly negative effect at some heights. The analysis of the TS from precipitation forecasts confirms that the addition of the two types of microwave data improves the accuracy of the forecasts for larger amounts of precipitation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Cheng, W.; Deng, Z.; Liu, J.; Wang, B.; Lu, B.; Wang, S.; Dong, L. Assimilation of the FY-4A AGRI clear-sky radiance data in a regional numerical model and its impact on the forecast of the “21·7” Henan extremely persistent heavy rainfall. Adv. Atmos. Sci. 2023, 40, 920–936. [Google Scholar] [CrossRef]
- Geer, A.J.; Lonitz, K.; Weston, P.; Kazumori, M.; Okamoto, K.; Zhu, Y.; Liu, E.H.; Collard, A.; Bell, W.; Migliorini, S.; et al. All-sky satellite data assimilation at operational weather forecasting centres. Q. J. R. Meteorol. Soc. 2018, 144, 1191–1217. [Google Scholar] [CrossRef]
- Le, M.H.; Zhang, R.; Nguyen, B.Q.; Bolten, J.D.; Lakshmi, V. Robustness of gridded precipitation products for Vietnam basins using the comprehensive assessment framework of rainfall. Atmos. Res. 2023, 293, 106923. [Google Scholar]
- Zhu, Y.; Liu, E.; Mahajan, R.; Thomas, C.; Groff, D.; Van Delst, P.; Collard, A.; Kleist, D.; Treadon, R.; Derber, J.C. All-sky microwave radiance assimilation in NCEP’s GSI analysis system. Mon. Weather Rev. 2016, 144, 4709–4735. [Google Scholar] [CrossRef]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst. 2016, 8, 1014–1028. [Google Scholar] [CrossRef]
- Li, J.; Li, J.L.; Otkin, J.; Schmit, T.J.; Liu, C.Y. Warning information in a preconvection environment from the geostationary advanced infrared sounding system—A simulation study using the IHOP case. J. Appl. Meteorol. Climatol. 2011, 50, 776–783. [Google Scholar] [CrossRef]
- Okamoto, K. Evaluation of IR radiance simulation for all-sky assimilation of Himawari-8/AHI in a mesoscale NWP system. J. Appl. Meteorol. Climatol. 2017, 143, 1517–1527. [Google Scholar] [CrossRef]
- Bauer, P.; Geer, A.J.; Lopez, P.; Salmond, D. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc. 2010, 136, 1868–1885. [Google Scholar] [CrossRef]
- Zhang, T.; Bao, Y.S.; Lu, Q.F. The Iasi date assimilating experiments on the heavy rain over the Yangtze river basin. Sci. Technol. Eng. 2016, 16, 9–16+36. [Google Scholar]
- Dou, F.L.; Lu, Q.F.; Guo, Y. Overview of Researches on All-Sky Satellite Microwave Data Variational Assimilation. Adv. Earth Sci. 2019, 34, 1120–1130. [Google Scholar]
- Kelly, G.; Thépaut, J.N. Evaluation of the impact of the space component of the Global Observing System through Observing System Experiments. ECMWF Newsl. 2007, 113, 16–28. [Google Scholar]
- Gu, S.Q.; Wang, Z.H.; Weng, F.Z.; Jishan, X.; Peiming, D. A study for improving a microwave land surface emissivity model with NOAA/AMSU data and the Grapes 3Dvar system. Plateau Meteorol. 2006, 25, 1101–1106. [Google Scholar]
- Liu, Z.; Schwartz, C.S.; Snyder, C.; Ha, S.Y. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Weather Rev. 2012, 140, 4017–4034. [Google Scholar] [CrossRef]
- Zhang, L.H.; Shen, T.L.; Wang, H.L. Variational assimilation of AMSU data and its application to Numerical simulation of heavy rainfall. Plateau Meteorol. 2007, 26, 1004–1012. [Google Scholar]
- Carminati, F.; Migliorini, S. All-sky data assimilation of MWTS-2 and MWHS-2 in the Met Office global NWP system. Adv. Atmos. Sci. 2021, 38, 1682–1694. [Google Scholar] [CrossRef]
- Lu, Q.F. Initial evaluation and assimilation of FY-3A atmospheric sounding data in the ECMWF System. Sci. China Earth Sci. 2011, 54, 1453–1457. [Google Scholar] [CrossRef]
- Lu, Q.F.; Bell, W.; Bauer, P.; Bormann, N.; Peubey, C. An evaluation of FY-3A satellite data for numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 1298–1311. [Google Scholar] [CrossRef]
- Zou, X.; Wang, X.; Weng, F.; Li, G. Assessments of Chinese Fengyun Microwave Temperature Sounder (MWTS) Measurements for Weather and Climate Applications. J. Atmos. Ocean. Technol. 2011, 28, 1206–1227. [Google Scholar] [CrossRef]
- Guan, L.; Zou, X.; Weng, F.; Li, G. Assessments of FY-3A microwave humidity sounder measurements using NOAA-18 microwave humidity sounder. J. Geophys. Res. Atmos. 2011, 116, D10106. [Google Scholar] [CrossRef]
- Chen, K.Y.; English, S.; Bormann, N.; Zhu, J. Assessment of FY-3A and FY-3B MWHS observations. ECMWF Tech. Memo. 2014, 734, 1280–1290. [Google Scholar] [CrossRef]
- Lawrence, H.; Bormann, N.; Lu, Q.; Geer, A.; English, S. An evaluation of FY-3C MWHS-2 at ECMWF. EUMETSAT/ECMWF Fellowsh. Programme Res. Rep. 2015, 37, 1–24. [Google Scholar]
- Lu, Q.; Lawrence, H.; Bormann, N.; English, S.; Lean, K.; Atkinson, N.; Bell, W.; Carminati, F. An Evaluation of FY-3C Satellite Data Quality at ECMWF and the Met Office; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2015. [Google Scholar]
- Sun, W.; Xu, Y. Assimilation of FY-3D MWHS-2 radiances with WRF hybrid-3DVar system for the forecast of heavy rainfall evolution associated with Typhoon Ampil. Mon. Weather Rev. 2021, 149, 1419–1437. [Google Scholar] [CrossRef]
- Xu, D.M.; Shu, A.Q.; Li, H.; Shen, F.; Li, Q.; Su, H. Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil. Remote Sens. 2021, 13, 2873. [Google Scholar] [CrossRef]
- Song, L.; Shen, F.; Shao, C.; Shu, A.; Zhu, L. Impacts of 3DEnVar-Based FY-3D MWHS-2 Radiance Assimilation on Numerical Simulations of Landfalling Typhoon Ampil (2018). Remote Sens. 2022, 14, 6037. [Google Scholar] [CrossRef]
- Chen, K.; Chen, Z.; Xian, Z.; Li, G. Impacts of the all-sky assimilation of FY-3C and FY-3D MWHS-2 radiances on analyses and forecasts of typhoon Hagupit. Remote Sens. 2023, 15, 2279. [Google Scholar] [CrossRef]
- Vandenberghe, F.; Ware, R. 4-dimensional variational assimilation of ground-based microwave observations during a winter fog event. In International Symposium on Atmospheric Sensing with GPS; Tsukuba, Japan. 2002. Available online: https://radiometrics.com/wp-content/uploads/2021/10/Vandenberghe_ASGPS-02.pdf (accessed on 15 July 2024).
- Otkin, J.A.; Hartung, D.C.; Turner, D.D.; Petersen, R.A.; Feltz, W.F.; Janzon, E. Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part I: Analysis impact. Mon. Weather Rev. 2011, 139, 2309–2326. [Google Scholar] [CrossRef]
- Hartung, D.C.; Otkin, J.A.; Petersen, R.A.; Turner, D.D.; Feltz, W.F. Assimilation of surface-based boundary layer profiler observations during a cool-season weather event using an observing system simulation experiment. Part II: Forecast assessment. Mon. Weather Rev. 2011, 139, 2327–2346. [Google Scholar] [CrossRef]
- Caumont, O.; Cimini, D.; Löhnert, U.; Alados-Arboledas, L.; Bleisch, R.; Buffa, F.; Ferrario, F.E.; Haefele, A.; Huet, T.; Madonna, F. Assimilation of humidity and temperature observations retrieved from ground-based microwave radiometers into a convective-scale NWP model. Q. J. R. Meteorol. Soc. 2016, 142, 2692–2704. [Google Scholar] [CrossRef]
- Martinet, P.; Cimini, D.; De Angelis, F.; Canut, G.; Unger, V.; Guillot, R.; Tzanos, D.; Paci, A. Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: An Alpine valley case study. Atmos. Meas. Tech. Discuss. 2017, 10, 3385–3402. [Google Scholar] [CrossRef]
- Martinet, P.; Cimini, D.; Burnet, F.; Ménétrier, B.; Michel, Y.; Unger, V. Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: A 1D-Var study. Atmos. Meas. Tech. 2020, 13, 6593–6611. [Google Scholar] [CrossRef]
- Vural, J.; Merker, C.; Löffler, M.; Leuenberger, D.; Schraff, C.; Stiller, O.; Schomburg, A.; Knist, C.; Haefele, A.; Hervo, M. Improving the representation of the atmospheric boundary layer by direct assimilation of ground-based microwave radiometer observations. Q. J. R. Meteorol. Soc. 2024, 150, 1012–1028. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Li, B.; Mao, J.; Lin, D. Assimilation of ground-based microwave radiometer on heavy rainfall forecast in Beijing. Atmosphere 2021, 13, 74. [Google Scholar] [CrossRef]
- Qi, Y.; Fan, S.; Mao, J.; Li, B.; Guo, C.; Zhang, S. Impact of assimilating ground-based microwave radiometer data on the precipitation bifurcation forecast: A case study in Beijing. Atmosphere 2021, 12, 551. [Google Scholar] [CrossRef]
- Wenying, H.; Chen, H.; Li, J. Influence of assimilating ground-based microwave radiometer data into the WRF model on precipitation. Atmos. Ocean. Sci. Lett. 2020, 13, 107–112. [Google Scholar]
- Liu, X.; Liu, D.; Guo, L. The observational precision of domestic MWP967KV ground-based microwave radiometer. J. Appl. Meteorol. Sci. 2019, 30, 731–744. [Google Scholar]
- Xu, H.; Zhang, X.F.; Huang, S.Y.; Fu, W. Comparative analysis of observation data between ground-based microwave radiometer and UAV Attached radiosonde. Bull. Sci. Technol. 2020, 36, 48–53. [Google Scholar]
- Xu, J.; Qiao, H.; Zhou, H.G.; Zhang, Y.Y.; Wu, Y.X. Comparison and case analysis of temperature and humidity between Airda-HTG4 ground-based multi-channel microwave radiometer and sounding station. Meteorol. Hydrol. Mar. Instrum. 2023, 40, 12–15. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xian, Z.; Chen, K.; Zhu, J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons. J. Geophys. Res. Atmos. 2019, 124, 6359–6378. [Google Scholar] [CrossRef]
- Li, J.; Liu, G. Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech. 2016, 9, 3095–3113. [Google Scholar] [CrossRef]
- Carminati, F.; Atkinson, N.; Candy, B.; Lu, Q. Insights into the microwave instruments onboard the Fengyun 3D satellite: Data quality and assimilation in the Met Office NWP system. Adv. Atmos. Sci. 2021, 38, 1379–1396. [Google Scholar] [CrossRef]
- Auligné, T.; Anthony, P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Ocean. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Milstein Adam, B.; William, J. Neural network temperature and moisture retrieval algorithm validation for AIRS/AMSU and CrIS/ATMS. J. Geophys. Res. Atmos. 2016, 121, 1414–1430. [Google Scholar] [CrossRef]
- Bao, Y.S.; Wang, Z.J.; Chen, Q.; Zhou, A.M.; Dong, Y.H.; Min, J.Z. Preliminary study on atmospheric temperature profiles retrieval from GIIRS based on FY-4A satellite. Aerosp. Shanghai 2017, 34, 28–37. [Google Scholar]
- Jin, Z.Q.; Zhang, H.; Bao, Y.S.; Cheng, W.; Cui, W.; Guan, Y.H.; Li, H.; Mao, J.J. Experimental research of FY-3D microwave detector cloudy data assimilation based on Temperature and humidity profile retrieval. Sci. Technol. Eng. 2023, 23, 5429–5443. [Google Scholar]
- Zhao, W.; Sun, J. Analysis of the July 2021 atmospheric circulation and weather. Meteorol. Mon. 2021, 47, 1289–1296. [Google Scholar]
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci. 2006, 42, 129–151. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D. Radiative transfer for in homogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Tech. Memo. 1994, 3, 104606. [Google Scholar]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the Unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, USA, 12–16 January 2004; pp. 11–15. [Google Scholar]
- Foken, T. 50 years of the Monin-Obukhov similarity theory. Bound. Layer Meteorol. 2006, 119, 431–447. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Wu, W.S.; Purser, R.J.; Parrish, D.F. Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Weather Rev. 2002, 130, 2905–2916. [Google Scholar] [CrossRef]
Element | Evaluation Index | Index Value |
---|---|---|
Bias/K | −0.4053 | |
Temperature | RMSE/K | 1.968 |
Correlation coefficient | 0.994 | |
Bias/% | 0.642 | |
Relative humidity | RMSE/% | 11.23 |
Correlation coefficient | 0.7515 | |
Bias/(g/kg) | −0.01768 | |
Specific humidity | RMSE/(g/kg) | 1.413 |
Correlation coefficient | 0.9717 |
Cycle Time | Amount of Retrieval Data | Amount of Clear-Sky Radiance | |
---|---|---|---|
Scan Bins of MWTS-2 | Scan Bins of MWHS-2 | ||
18 UTC | 2307 | 1587 | 420 |
06 UTC | 2196 | 1960 | 551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Cheng, W.; Bao, Y.; Wang, S.; Petropoulos, G.P.; Fan, S.; Mao, J.; Jin, Z.; Yang, Z. Effects of Assimilating Ground-Based Microwave Radiometer and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting. Remote Sens. 2024, 16, 2682. https://doi.org/10.3390/rs16142682
Wang B, Cheng W, Bao Y, Wang S, Petropoulos GP, Fan S, Mao J, Jin Z, Yang Z. Effects of Assimilating Ground-Based Microwave Radiometer and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting. Remote Sensing. 2024; 16(14):2682. https://doi.org/10.3390/rs16142682
Chicago/Turabian StyleWang, Bingli, Wei Cheng, Yansong Bao, Shudong Wang, George P. Petropoulos, Shuiyong Fan, Jiajia Mao, Ziqi Jin, and Zihui Yang. 2024. "Effects of Assimilating Ground-Based Microwave Radiometer and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting" Remote Sensing 16, no. 14: 2682. https://doi.org/10.3390/rs16142682
APA StyleWang, B., Cheng, W., Bao, Y., Wang, S., Petropoulos, G. P., Fan, S., Mao, J., Jin, Z., & Yang, Z. (2024). Effects of Assimilating Ground-Based Microwave Radiometer and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting. Remote Sensing, 16(14), 2682. https://doi.org/10.3390/rs16142682