Weak-Texture Seafloor and Land Image Matching Using Homography-Based Motion Statistics with Epipolar Geometry
Abstract
:1. Introduction
2. Methodology
2.1. Filtering with Motion Statistics
2.2. Homography-Based Scale and Orientation Adaptation
2.3. Matching-Metrics Evaluation
3. Study Area and Dataset
3.1. Study Area
3.2. Data and Experiment
4. Results
4.1. Matching-Point Results
4.2. Comparison and Evaluation of the Matching Results
4.3. Distributions of Seafloor and Land Matching Points
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abaspur Kazerouni, I.; Dooly, G.; Toal, D. Underwater image enhancement and mosaicking system based on A-KAZE feature matching. J. Mar. Sci. Eng. 2020, 8, 449. [Google Scholar] [CrossRef]
- Alcantarilla, P.F.; Nuevo, J.; Bartoli, A. Fast explicit diffusion for accelerated features in nonlinear scale spaces. In Proceedings of the Electronic Proceedings of the British Machine Vision Conference 2013; Bristol, UK, 9–13 September 2013. [CrossRef]
- Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Cooley, T.W.; Chetwynd, J.H., Jr.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A. MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes). In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4725, pp. 65–71. [Google Scholar]
- Baker, S.; Gross, R.; Matthews, I. Lucas-kanade 20 years on: A unifying framework. Part 2 1 Introduction. Int. J. Comput. Vis. 2004, 56, 221–255. [Google Scholar] [CrossRef]
- Barandiaran, I.; Graña, M.; Nieto, M. An empirical evaluation of interest point detectors. Cybern. Syst. 2013, 44, 98–117. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Beall, C.; Lawrence, B.J.; Ila, V.; Dellaert, F. 3D reconstruction of underwater structures. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4418–4423. [Google Scholar]
- Bekerman, Y.; Avidan, S.; Treibitz, T. Unveiling optical properties in underwater images. In Proceedings of the 2020 IEEE International Conference on Computational Photography (ICCP), St. Louis, MO, USA, 24–26 April 2020; pp. 1–12. [Google Scholar]
- Bian, J.W.; Lin, W.Y.; Liu, Y.; Zhang, L.; Yeung, S.K.; Cheng, M.M.; Reid, I. GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence. Int. J. Comput. Vis. 2020, 128, 1580–1593. [Google Scholar] [CrossRef]
- Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the performance of structure from motion pipelines. J. Imaging 2018, 4, 98. [Google Scholar] [CrossRef]
- Yang, F.; Qi, C.; Su, D.; Ding, S.; He, Y.; Ma, Y. An airborne LiDAR bathymetric waveform decomposition method in very shallow water: A case study around Yuanzhi Island in the South China Sea. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102788. [Google Scholar] [CrossRef]
- Saylam, K.; Brown, R.A.; Hupp, J.R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 191–200. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F. Photogrammetry: Linking the world across the water surface. J. Mar. Sci. Eng. 2020, 8, 128. [Google Scholar] [CrossRef]
- Harris, P.T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.K. Geomorphology of the oceans. Mar. Geol. 2014, 352, 4–24. [Google Scholar] [CrossRef]
- Heap, A.D.; Harris, P.T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 2008, 55, 555–585. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.; Harborne, A.R.; Heron, S.F.; Weeks, S.J.; Skirving, W.J.; Strong, A.E.; Mark Eakin, C.; Christensen, T.R.L.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef]
- Heinly, J.; Dunn, E.; Frahm, J.M. Comparative Evaluation of Binary Features; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Jin, Y.; Mishkin, D.; Mishchuk, A.; Matas, J.; Fua, P.; Yi, K.M.; Trulls, E. Image matching across wide baselines: From paper to practice. Int. J. Comput. Vis. 2021, 129, 517–547. [Google Scholar] [CrossRef]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near-infrared wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Zhang, H.; Li, J.; Huang, H. An automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. 2016, 8, 520. [Google Scholar] [CrossRef]
- Skakun, S.; Roger, J.C.; Vermote, E.F.; Masek, J.G.; Justice, C.O. Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. Int. J. Digit. Earth 2017, 10, 1253–1269. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, L.; Pu, S.; Fan, J.; Ye, Y. Advances and challenges in multimodal remote sensing image registration. IEEE J. Miniaturization Air Space Syst. 2023, 4, 165–174. [Google Scholar] [CrossRef]
- Lin, W.; Liu, S.; Matsushita, Y.; Ng, T.; Cheong, L. Smoothly varying affine stitching. In Proceedings of the Conference on Computer Vision and Pattern Recognition 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 345–352. [Google Scholar]
- Lin, W. Institutional Knowledge at Singapore Management University CODE: Coherence based decision boundaries for feature correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 34–47. [Google Scholar] [CrossRef]
- Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. Pattern Recognit. 1998, 30, 79–116. [Google Scholar] [CrossRef]
- Lipman, Y.; Yagev, S.; Poranne, R.; Jacobs, D.W.; Basri, R. Feature matching with bounded distortion. ACM Trans. Graph. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Muja, M.; Lowe, D.G. Fast approximate nearest neighbors with automatic algorithm configuration. Int. Jt. Conf. Comput. Vis. Comput. Graph. Theory Appl. 2009, 2, 331–340. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Padwick, C.; Deskevich, M.; Pacifici, F.; Smallwood, S. WorldView-2 pan-sharpening. In Proceedings of the American Society for Photogrammetry and Remote Sensing Annual Conference 2010: Opportunities for Emerging Geospatial Technologies, San Diego, CA, USA, 26 April 2010; Volume 2, pp. 740–753. [Google Scholar]
- Papakonstantinou, A.; Kavroudakis, D.; Kourtzellis, Y.; Chtenellis, M.; Kopsachilis, V.; Topouzelis, K.; Vaitis, M. Mapping cultural heritage in coastal areas with UAS: The case study of Lesvos island. Heritage 2019, 2, 1404–1422. [Google Scholar] [CrossRef]
- Pizarro, D.; Bartoli, A. Feature-based deformable surface detection with self-occlusion reasoning. Int. J. Comput. Vis. 2012, 97, 54–70. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Sarlin, P.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. Superglue: Learning feature matching with graph neural networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 4938–4947. [Google Scholar]
- Sedaghat, A.; Mokhtarzade, M.; Ebadi, H. Uniform robust scale-invariant feature matching for optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4516–4527. [Google Scholar] [CrossRef]
- Sedaghat, A.; Ebadi, H. Distinctive order based self-similarity descriptor for multi-sensor remote sensing image matching. ISPRS J. Photogramm. Remote Sens. 2015, 108, 62–71. [Google Scholar] [CrossRef]
- Sedaghat, A.; Ebadi, H. Remote sensing image matching based on adaptive binning SIFT descriptor. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5283–5293. [Google Scholar] [CrossRef]
- Shah, R.; Srivastava, V.; Narayanan, P.J. Geometry-aware feature matching for structure from motion applications. In Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2015; pp. 278–285. [Google Scholar]
- Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; Zhou, X. LoFTR: Detector-free local feature matching with transformers. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 8922–8931. [Google Scholar]
- Zhao, J.H.; Wang, A.X. Precise marine surveying and data processing technology and their progress of application. Hydrogr. Surv. Chart 2015, 35, 1–6. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Mo, D.; Zhang, Y.; Li, X. Direct digital surface model generation by semi-global vertical line locus matching. Remote Sens. 2017, 9, 214. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Zhu, Q. Integrated point and edge matching on poor textural images constrained by self-adaptive triangulations. ISPRS J. Photogramm. Remote Sens. 2012, 68, 40–55. [Google Scholar] [CrossRef]
- Kanade, T.; Okutomi, M. A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 920–932. [Google Scholar] [CrossRef]
- Ye, L.; Wu, B. Integrated image matching and segmentation for 3D surface reconstruction in urban areas. Photogramm. Eng. Remote Sens. 2018, 84, 135–148. [Google Scholar] [CrossRef]
- Hu, H.; Rzhanov, Y.; Hatcher, P.J.; Bergeron, R.D. Binary adaptive semi-global matching based on image edges. In Proceedings of the Seventh International Conference on Digital Image Processing (ICDIP 2015), Los Angeles, USA, 9–10 April 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9631, pp. 306–312. [Google Scholar]
- Zhang, F.; Bian, H.; Lv, Z.; Zhai, Y. Ring-Masked Attention Network for Rotation-Invariant Template-Matching. IEEE Signal Process. Lett. 2023, 30, 289–293. [Google Scholar] [CrossRef]
- Zhang, F.; Bian, H.; Ge, W.; Wei, M. Exploiting Deep Matching and Underwater Terrain Images to Improve Underwater Localization Accuracy. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Cui, S.; Ma, A.; Zhang, L.; Xu, M.; Zhong, Y. MAP-Net: SAR and Optical Image Matching via Image-Based Convolutional Network with Attention Mechanism and Spatial Pyramid Aggregated Pooling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
Study Area | Acquisition Time | Image Name | Resolution (m) |
---|---|---|---|
Zhaoshu Island | 11 March 2017 | 17MAR11030327-M2AS-056861369020_01_P001 | 1.8 |
17MAR11030446-M2AS-056861369020_01_P001 | |||
Ganquan Island | 2 April 2014 | 14APR02033318-M2AS-054801903010_01_P001 | |
14APR02033200-M2AS-054801903010_01_P001 | |||
Lingyang Reef | 2 April 2014 | 14APR02033159-M2AS-056861369050_01_P002 | |
14APR02033318-M2AS-056861369050_01_P002 |
Matching Method | False-Match Filter | Method Configuration |
---|---|---|
SIFT | RT | SIFT-RT |
SURF | RT | SURF-RT |
AKAZE | RT | AKAZE-RT |
GMS | AKAZE-GMS | |
HMSEC | AKAZE-HMSEC | |
ORB | RT | ORB-RT |
GMS | ORB-GMS | |
HMSEC | ORB-HMSEC |
Zhaoshu Island | PMR (%) | MS (%) | SMR (%) | SMN | TMN |
---|---|---|---|---|---|
SIFT | 40.15 | 36.91 | 57.58 | 399 | 693 |
SURF | 49.85 | 40.68 | 57.02 | 256 | 449 |
AKAZE-RT | 54.08 | 43.43 | 10 | 2 | 20 |
ORB-RT | 48.11 | 34.31 | 4.942 | 17 | 344 |
AKAZE-GMS | 54.09 | 42.44 | 0 | 0 | 25 |
AKAZE-HMSEC | 53.57 | 43.79 | 43.44 | 182 | 419 |
ORB-GMS | 48.11 | 40.54 | 26.92 | 91 | 338 |
ORB-HMSEC | 50.44 | 53.65 | 60.20 | 1812 | 3010 |
Ganquan Island | PMR (%) | MS (%) | SMR (%) | SMN | TMN |
---|---|---|---|---|---|
SIFT | 39.17 | 32.72 | 0 | 0 | 124 |
SURF | 37.66 | 21.75 | 0 | 0 | 144 |
AKAZE-RT | 56.35 | 31.22 | 2.35 | 2 | 85 |
ORB-RT | 30.57 | 20.79 | 39.10 | 646 | 1652 |
AKAZE-GMS | 57.01 | 33.18 | 3.33 | 3 | 90 |
AKAZE-HMSEC | 56.54 | 32.36 | 1.37 | 3 | 219 |
ORB-GMS | 31.89 | 33.22 | 44.32 | 1144 | 2581 |
ORB-HMSEC | 31.27 | 34.31 | 24.13 | 1291 | 5348 |
Lingyang Reef | PMR (%) | MS (%) | SMR (%) | SMN | TMN |
---|---|---|---|---|---|
SIFT | 10.29 | 27.70 | 100 | 210 | 210 |
SURF | 28.70 | 54.90 | 100 | 227 | 227 |
AKAZE-RT | 20.89 | 38.61 | 100 | 60 | 60 |
ORB-RT | 64.36 | 57.76 | 100 | 4821 | 4821 |
AKAZE-GMS | 20.89 | 37.34 | 100 | 58 | 58 |
AKAZE-HMSEC | 20.91 | 34.81 | 100 | 50 | 50 |
ORB-GMS | 64.36 | 59.29 | 100 | 5023 | 5023 |
ORB-HMSEC | 65.95 | 69.61 | 100 | 6369 | 6369 |
Study Area | Increments of the Matching Points | ||
---|---|---|---|
Land Points | Underwater Points | Total Points | |
Zhaoshu Island | 951 | 1721 | 2672 |
Ganquan Island | 2620 | 147 | 2767 |
Lingyang Reef | - | 1346 | 1346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Le, Y.; Wu, L.; Zhang, D.; Zhao, Q.; Zhang, X.; Liu, L. Weak-Texture Seafloor and Land Image Matching Using Homography-Based Motion Statistics with Epipolar Geometry. Remote Sens. 2024, 16, 2683. https://doi.org/10.3390/rs16142683
Chen Y, Le Y, Wu L, Zhang D, Zhao Q, Zhang X, Liu L. Weak-Texture Seafloor and Land Image Matching Using Homography-Based Motion Statistics with Epipolar Geometry. Remote Sensing. 2024; 16(14):2683. https://doi.org/10.3390/rs16142683
Chicago/Turabian StyleChen, Yifu, Yuan Le, Lin Wu, Dongfang Zhang, Qian Zhao, Xueman Zhang, and Lu Liu. 2024. "Weak-Texture Seafloor and Land Image Matching Using Homography-Based Motion Statistics with Epipolar Geometry" Remote Sensing 16, no. 14: 2683. https://doi.org/10.3390/rs16142683
APA StyleChen, Y., Le, Y., Wu, L., Zhang, D., Zhao, Q., Zhang, X., & Liu, L. (2024). Weak-Texture Seafloor and Land Image Matching Using Homography-Based Motion Statistics with Epipolar Geometry. Remote Sensing, 16(14), 2683. https://doi.org/10.3390/rs16142683