Remotely Piloted Aircraft for Evaluating the Impact of Frost in Coffee Plants: Interactions between Plant Age and Topography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Area
2.2. Experimental Design
2.3. Frost Damage Assessment and Plant Response
2.4. Aerial Imaging and Image Processing
2.5. Vegetation Indices
2.6. Statistical Analyses
- Y = dependent variable;
- X = independent variable;
- = intercept;
- = angular coefficient;
- Y = dependent variable;
- X = independent variables;
- = intercept;
- , = coefficients of each independent variable;
3. Results
3.1. Frost Damage in Climate Risk Zones
3.2. Maps of Vegetation Indices as a Function of Frost Occurrence
3.3. Modelling of Frost Damage Generated by Vegetation Indices
3.3.1. Simple Linear Regression and Pearson’s Analysis
3.3.2. Multiple Regression Analysis
4. Discussion
4.1. Frost Damage and Relationship between Plant Age and Topography
4.2. Maps of Vegetation in Relation to Frost Leaf Damage
4.3. Modelling of Frost Damage Generated by Vegetation Indices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santana, L.S.; Ferraz, G.A.e.S.; dos Santos, S.A.; Dias, J.E.L. Precision coffee growing: A review. Coffee Sci. 2022, 17, 172007. [Google Scholar] [CrossRef]
- Santos, L.M.d.; Ferraz, G.A.e.S.; Carvalho, M.A.d.F.; Teodoro, S.A.; Campos, A.A.V.; Menicucci Neto, P. Use of RPA Images in the Mapping of the Chlorophyll Index of Coffee Plants. Sustainability 2022, 14, 13118. [Google Scholar] [CrossRef]
- CONAB—Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Café; Segundo Levantamento—Safra: Brasília, Brazil, 2023; Volume 10, pp. 1–44. Available online: https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe (accessed on 12 March 2024).
- United States Department of Agriculture—USDA. Coffee: World Markets and Trade; Foreign Agricultural Service/USDA: Washington, DC, USA, 2022. Available online: https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf (accessed on 25 November 2023).
- Braga, G.B.; Imbuzeiro, H.M.A.; Pires, G.F.; de Oliveira, L.R.; Barbosa, R.A.; Vilela, K.d.F. Frost Risk and Rural Insurance in Brazil. Rev. Bras. Meteorol. 2021, 36, 703–711. [Google Scholar] [CrossRef]
- Wrege, M.S.; Fritzsons, E.; Soares, M.T.; Prela-Pântano, A.; Steinmetz, S.; Caramori, P.H.; Radin, B.; Pandolfo, C. Risco de ocorrência de geadas na região centro-sul do Brasil. Rev. Bras. Climatol. 2018, 22, 524–553. [Google Scholar] [CrossRef]
- Alvares, C.A.; Sentelhas, P.C.; Stape, J.L. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil. Theor. Appl. Climatol. 2018, 134, 177–191. [Google Scholar] [CrossRef]
- Alves, H.M.R.; da Silva, L.; Machado, L.d.S.; da Silva, J.A.; Castro, L.H.S.e.; Capetine, T.B.; Cavatte, P.C. Resumo expandido. In Proceedings of the X Simpósio de Pesquisa dos Cafés do Brasil, Vitória, Brazil, 8–11 October 2019. [Google Scholar]
- Borém, F.M.; Luz, M.P.S.; Sáfadi, T.; Volpato, M.M.L.; Alves, H.M.R.; Borém, R.A.T.; Maciel, D.A. Meteorological variables and sensorial quality of coffee in the Mantiqueira region of Minas Gerais. Coffee Sci. 2019, 14, 38–47. [Google Scholar] [CrossRef]
- Camargo, P.; Camargo, M.B. Frost in Coffee Crops: Frost Characteristics, Damaging Effects on Coffee and Alleviation Options. In Coffee: Growing, Processing, Sustaining Production: A Guidebook for Growers, Processors, Traders, and Researchers, 1st ed.; Wiley-VCH: Weinheim, Germany, 2004; Chapter 11; pp. 355–369. [Google Scholar]
- Kumhálová, J.; Moudrý, V. Topographical characteristics for precision agriculture in conditions of the Czech Republic. Appl. Geogr. 2014, 50, 90–98. [Google Scholar] [CrossRef]
- Shammi, S.; Sohel, F.; Diepeveen, D.; Zander, S.; Jones, M.G. A survey of image-based computational learning techniques for frost detection in plants. Inf. Process. Agric. 2023, 10, 164–191. [Google Scholar] [CrossRef]
- Al-Issawi, M.; Rihan, H.Z.; El-Sarkassy, N.; Fuller, M.P. Frost Hardiness Expression and Characterisation in Wheat at Ear Emergence. J. Agron. Crop Sci. 2013, 199, 66–74. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.e.S.; Schwerz, F.; Barata, R.A.P.; Faria, R.d.O.; Dias, J.E.L. Unmanned aerial vehicle to evaluate frost damage in coffee plants. Precis. Agric. 2021, 22, 1845–1860. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Oliveira, J.C.; Souza, V.C.O.; Volpato, M.M.L.; Alves, H.M.R. Caracterização ambiental de áreas cafezais utilizando o Google Earth Engine. In Proceedings of the XX Simpósio de Sensoriamento Remoto, INPE, Florianópolis, Brazil, 2–5 April 2023; pp. 2869–2870. [Google Scholar]
- Soderholm, P.K.; Gaskins, M.H. Evaluation of cold resistance in the genus Coffea. Am. Soc. Hortic. Sci. Caribb. Reg. 1960, 4, 8–15. [Google Scholar]
- Androcioli Filho, A.; Siqueira, R.; Caramori, P.H.; Pavan, M.A.; Sera, T.; Soderholm, P.K. Frost injury and performance of coffee at 23oS in Brazil. Exp. Agric. 1986, 22, 71–74. [Google Scholar] [CrossRef]
- 3D ROBOTICS. Available online: https://dronepro.com/3d-robotics/ (accessed on 26 July 2024).
- Pix4dmapper Software Manual Pix4D Support. Lausanne, Suiça: Pix4D SA.2013b. Available online: https://www.pix4d.com/ (accessed on 15 January 2023).
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project: Beaverton, OR, USA, 2018. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; 371p. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 308–403. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K. A review of remote sensing methods for biomass feedstock production. Biomass Bioenergy 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Callegari, J.S.M. Bioestatística: Princípios e Aplicações; Artemed: Porto Alegre, Brazil, 2003. [Google Scholar]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 14 April 2024).
- Allevato, E.; Saulino, L.; Cesarano, G.; Chirico, G.B.; D’Urso, G.; Bolognesi, S.F.; Rita, A.; Rossi, S.; Saracino, A.; Bonanomi, G. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens. Environ. 2019, 225, 431–440. [Google Scholar] [CrossRef]
- Righi, C.A.; Bernardes, M.S.; Lunz, A.M.P.; Pereira, C.R.; Neto, D.D.; Favarin, J.L. Measurement and simulation of solar radiation availability in relation to the growth of coffee plants in an agroforestry system with rubber trees. Rev. Árvore 2007, 31, 195–207. [Google Scholar] [CrossRef]
- Kotikot, S.M.; Flores, A.; Griffin, R.E.; Sedah, A.; Nyaga, J.; Mugo, R.; Limaye, A.; Irwin, D.E. Mapping threats to agriculture in East Africa: Performance of MODIS derived LST for frost identification in Kenya’s tea plantations. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 131–139. [Google Scholar] [CrossRef]
- Burns, P.; Chemel, C. Interactions between downslope flows and a developing cold-air pool. Bound.-Layer Meteorol. 2015, 154, 57–80. [Google Scholar] [CrossRef]
- Bigg, G.R.; Wise, S.M.; Hanna, E.; Mansell, D.; Bryant, R.G.; Howard, A. Synoptic climatology of cold air drainage in the Derwent Valley, Peak District, UK. Meteorol. Appl. 2014, 21, 161–170. [Google Scholar] [CrossRef]
- Chung, U.; Seo, H.H.; Hwang, K.H.; Hwang, B.S.; Choi, J.; Lee, J.T.; Yun, J.I. Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agric. For. Meteorol. 2006, 137, 15–24. [Google Scholar] [CrossRef]
- Alves, J.D.; Silva, V.A.; Volpato, M.M.L.; de Matos, C.S.M.; Pereira, A.B.; de Oliveira Santos, M. Danos Fisiológicos da Geada Sobre o Cafeeiro nas Regiões Sul e Cerrado de Minas Gerais; Circular Técnico: Minas Gerais, MG, Brasil, 2021. [Google Scholar]
- Caramori, P.H.; Caviglione, J.H.; Wrege, M.S.; Gonçalves, S.L.; Faria, R.D.; Androcioli Filho, A.; Sera, T.; Chaves, J.C.; Koguishi, M.S. Zoneamento de riscos climáticos para a cultura de café (Coffea arabica L.) no Estado do Paraná. Rev. Bras. Agrometeorol. 2001, 9, 486–494. [Google Scholar]
- Gabbrielli, M.; Corti, M.; Perfetto, M.; Fassa, V.; Bechini, L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy 2022, 12, 2025. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; Aguiar, D.A.; Adami, M.; Salgado, M.P.G. Frost Damage Detection in Sugarcane Crop Using MODIS Images and SRTM Data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5709–5712. [Google Scholar]
- Li, W.; Huang, J.; Yang, L.; Chen, Y.; Fang, Y.; Jin, H.; Huang, R. A practical remote sensing monitoring framework for late frost damage in wine grapes using multi-source satellite data. Remote Sens. 2021, 13, 3231. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Y.; Tang, J.; Wu, D.; Chen, H.; Jin, Z.; Huo, Z. Spring frost damage to tea plants can be identified with daily minimum air temperatures estimated by MODIS land surface temperature products. Remote Sens. 2021, 13, 1177. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
Index Vegetation | Formulas | References |
---|---|---|
NDVI (normalized difference vegetation index) | (Nir − Red)/(Nir + Red) | [22] |
NDRE (normalized difference red edge) | (Nir − RedEdge)/(Nir + RedEdge) | [23] |
MTCI (meris terrestrial chlorophyll index) | (Nir − RedEdge)/(RedEdge − Red) | [24] |
MSR (modified simple ratio) | ((Nir/Red) − 1)/(√((Nir/Red)) + 1) | [25] |
GNDVI (green normalized difference vegetation index) | (Nir − Green)/(NIR + Green) | [26] |
GCI (green coverage index) | (Nir/Green) − 1 | [27] |
NDWI (normalized difference water index) | (Green − Nir)/(Green + Nir) | [28] |
MCARI1 (first modified chlorophyll absorption ratio index) | 1.2 (2.5 (Nir − Red) − 1.3 (Nir − Green)) | [29] |
MCARI2 (modified chlorophyll absorption in reflectance index 2) | 1.5 (2.5 (Nir − Red) − 1.3 (Nir − Green)) (Nir/Red)/√ (2Nir + 1) 2 − (6Nir − 5√Red) − 0.5 | [29] |
SAVI (soil adjusted difference vegetation index) | (1 + 0.5) ∗ ((Nir − Red)/(Nir + Red + 0.5)) | [30] |
OSAVI (optmized SAVI) | (Nir − Red)/(Nir + Red + 0.16) | [31] |
CIrededge (Chlorophyll IndexRedEdge) | (Nir/RedEdge) − 1 | [32] |
Climatic Risk Zones | Age of Plantation | |
---|---|---|
DL | NN | |
One year | ||
High risk | 9 a | 6 a |
Low risk | 4 b | 6 a |
Value (F) | 0.05 | 0.66 NS |
DMS | 0.99 | 0.64 |
CV% | 21.68 | 15.87 |
Climatic Risk Zones | Age of Plantation | |
---|---|---|
DL | NN | |
Two year | ||
High risk | 11 a | 11 a |
Low risk | 5 b | 12 a |
Value (F) | 3.88 | 0.45 NS |
DMS | 1.27 | 1.05 |
CV% | 22.91 | 13.61 |
Climatic Risk Zones | ||||
---|---|---|---|---|
Age of Planting | Low Risk | High Risk | ||
FD (%) | SD | FD (%) | SD | |
One year | 6 Bb | 2.3 | 88 Aa | 7.7 |
Two years | 12 Ab | 4.85 | 50 Ba | 8.66 |
IsV | Risk | β0 | β1 | r | R2 |
---|---|---|---|---|---|
NDVI | Low | −5.38 | 23.20 * | 0.53 | 0.28 |
High | 76.56 * | 34.79 | 0.26 | 0.07 | |
NDRE | Low | 2.67 | 21.99 | 0.24 | 0.06 |
High | 120.01 * | −253.72 * | −0.57 | 0.33 | |
MTCI | Low | 6.78 * | −1.25 | −0.04 | 0 |
High | 111.96 * | −142.39 * | −0.56 | 0.32 | |
MSR | Low | −5.75 | 23.03 | 0.38 | 0.14 |
High | 104.18 * | −59.25 | −0.38 | 0.14 | |
GNDVI | Low | 10.84 * | −46.49 | −0.31 | 0.09 |
High | 75.60 * | 88.02 | 0.25 | 0.06 | |
CGI | Low | −1.19 | 2.818 | 0.37 | 0.14 |
High | 90.53 * | −1.94 | −0.06 | 0 | |
NDWI | Low | −7.66 | −20.26 | −0.31 | 0.09 |
High | 95.31 * | 19.06 | 0.09 | 0.01 | |
CIrededge | Low | −2.46 | 3.38 * | 0.64 | 0.41 |
High | 83.71 * | 5.15 | 0.14 | 0.02 | |
SAVI | Low | −9.57 | 38.57 * | 0.61 | 0.37 |
High | 86.49 * | 6.48 | 0.03 | 0 | |
OSAVI | Low | −11.21 * | 42.08 * | 0.64 | 0.41 |
High | 89.18 * | −2.44 | −0.01 | 0 | |
MACARI1 | Low | −6.51 * | 26.07 * | 0.77 | 0.60 |
High | 86.51 * | 6.04 | 0.04 | 0 | |
MACARI2 | Low | 6.32 * | −4.08 | −0.17 | 0.03 |
High | 94.59 * | 21.87 | 0.41 | 0.16 |
IsV | Risk | β0 | β1 | r | R2 |
---|---|---|---|---|---|
NDVI | Low | 2.72 | 11.32 | 0.08 | 0.01 |
High | 99.39 * | −70.43 | −0.34 | 0.11 | |
NDRE | Low | 29.97 | −51.2 | −0.14 | 0.02 |
High | 26.6 | 76.48 | 0.17 | 0.02 | |
MTCI | Low | 6.7 | 7.16 | 0.08 | 0.01 |
High | 47.14 | 4.01 | 0.03 | 0 | |
MSR | Low | −9.41 | 15.13 | 0.27 | 0.07 |
High | 66.66 * | −14.37 | −0.20 | 0.04 | |
GNDVI | Low | 4.64 | 10.08 | 0.08 | 0.01 |
High | 60.93 | −16.78 | −0.07 | 0.01 | |
CGI | Low | 12.78 | −0.19 | −0.04 | 0 |
High | 37.20 | 2.47 | 0.14 | 0.02 | |
NDWI | Low | 17.60 | 8.07 | 0.07 | 0.01 |
High | 19.03 | −42.91 | −0.09 | 0.01 | |
CIrededge | Low | 11.40 | 0,03 | 0.01 | 0 |
High | 89.57 * | −7.78 | −0.33 | 0.11 | |
SAVI | Low | −12.83 | 30.99 | 0.21 | 0.05 |
High | 197.07 | −205.66 | −0.36 | 0.13 | |
OSAVI | Low | 16.56 | −8.05 | −0.09 | 0.01 |
High | 4.503 | 78.87 | 0.26 | 0.07 | |
MACARI1 | Low | 13.70 * | −2.57 | −0.09 | 0.01 |
High | 34.28 * | 18.27 | 0.39 | 0.15 | |
MACARI2 | Low | 15.71 * | 6.25 | 0.30 | 0.09 |
High | 38.36 * | −21.22 | −0.40 | 0.16 |
Isv | 1-Year-Old Plants | 2-Year-Old Plants |
---|---|---|
NDVI | −0.83 | −0.75 |
NDRE | −0.74 | 0.13 NS |
MTCI | −0.83 | −0.39 |
MSR | −0.95 | −0.70 |
GNDVI | 0.79 | −0.43 |
CGI | −0.93 | −0.37 |
NDWI | 0.93 | 0.42 |
CIrededge | −0.92 | −0.74 |
SAVI | −0.91 | −0.79 |
OSAVI | −0.93 | −0.33 |
MCARI1 | −0.87 | 0.21 NS |
MCARI2 | −0.73 | 0.23 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, G.F.; Ferraz, G.A.e.S.; Schwerz, F.; Faria, R.d.O.; Fernandes, F.A.; Marin, D.B. Remotely Piloted Aircraft for Evaluating the Impact of Frost in Coffee Plants: Interactions between Plant Age and Topography. Remote Sens. 2024, 16, 3467. https://doi.org/10.3390/rs16183467
Valente GF, Ferraz GAeS, Schwerz F, Faria RdO, Fernandes FA, Marin DB. Remotely Piloted Aircraft for Evaluating the Impact of Frost in Coffee Plants: Interactions between Plant Age and Topography. Remote Sensing. 2024; 16(18):3467. https://doi.org/10.3390/rs16183467
Chicago/Turabian StyleValente, Gislayne Farias, Gabriel Araújo e Silva Ferraz, Felipe Schwerz, Rafael de Oliveira Faria, Felipe Augusto Fernandes, and Diego Bedin Marin. 2024. "Remotely Piloted Aircraft for Evaluating the Impact of Frost in Coffee Plants: Interactions between Plant Age and Topography" Remote Sensing 16, no. 18: 3467. https://doi.org/10.3390/rs16183467
APA StyleValente, G. F., Ferraz, G. A. e. S., Schwerz, F., Faria, R. d. O., Fernandes, F. A., & Marin, D. B. (2024). Remotely Piloted Aircraft for Evaluating the Impact of Frost in Coffee Plants: Interactions between Plant Age and Topography. Remote Sensing, 16(18), 3467. https://doi.org/10.3390/rs16183467