Quantifying the Pabu Normal Fault Scarp, Southern Tibetan Plateau: Insights into Regional Earthquake Risk
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
5. Discussion
5.1. Spatial Pattern of the Fault Scarp Morphometric Parameters
5.2. Uncertainty in the Derived Scarp Height
5.3. Seismic Hazards Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Tian, X.; Liang, X.; Nie, S. Different Formation Modes of the North–South-Trending Rifts in Southern Tibet: Implications From Ambient Noise Tomography. Geophys. Res. Lett. 2024, 51, e2024GL108254. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Yuan, X.; Badal, J.; Teng, J. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet. Sci. Lett. 2015, 413, 13–24. [Google Scholar] [CrossRef]
- Copley, A.; Avouac, J.-P.; Wernicke, B.P. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet. Nature 2011, 472, 79–81. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Active tectonics of Tibet. J. Geophys. Res. Solid Earth 1978, 83, 5361–5375. [Google Scholar] [CrossRef]
- Armijo, R.; Tapponnier, P.; Mercier, J.L.; Han, T.-L. Quaternary extension in southern Tibet: Field observations and tectonic implications. J. Geophys. Res. Solid Earth 1986, 91, 13803–13872. [Google Scholar] [CrossRef]
- Ha, G.; Wu, Z.; Liu, F. Late Quaternary vertical slip rates along the Southern Yadong–Gulu Rift, Southern Tibetan Plateau. Tectonophysics 2019, 755, 75–90. [Google Scholar] [CrossRef]
- Wu, Z.; Peisheng, Y.; Chengmin, W.; Keqi, Z.; Hua, Z.; Yonggang, Z.; Jinhui, Y.; Huhou, L. The Relics, Ages and Significance of Prehistoric Large Earthquakes in the Angang Graben in South Tibet. Earth Sci. 2015, 40, 1621–1642. [Google Scholar] [CrossRef]
- Ha, G.; Wu, Z. Discussion of the seismogenic structure of the 1901 M 6 3/4 Nyemo earthquake. J. Geomech. 2021, 27, 218–229. [Google Scholar]
- Taylor, M.; Yin, A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 2009, 5, 199–214. [Google Scholar] [CrossRef]
- Science and Technology Commission and Archives of Tibet Autonomous Region. Compilation of Historical Earthquake Data of Tibet; Tibet People’s Publishing House: Lhasa, China, 1982; Volume 1.
- Zeng, Q.; Yuan, G.; McSaveney, M.; Ma, F.; Wei, R.; Liao, L.; Du, H. Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault. Eng. Geol. 2020, 268, 105522. [Google Scholar] [CrossRef]
- Chevalier, M.L.; Tapponnier, P.; van der Woerd, J.; Leloup, P.H.; Wang, S.; Pan, J.; Bai, M.; Kali, E.; Liu, X.; Li, H. Late Quaternary Extension Rates Across the Northern Half of the Yadong-Gulu Rift: Implication for East-West Extension in Southern Tibet. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019106. [Google Scholar] [CrossRef]
- Wang, S.; Chevalier, M.-L.; Pan, J.; Bai, M.; Li, K.; Li, H.; Wang, G. Quantification of the late Quaternary throw rates along the Yadong rift, southern Tibet. Tectonophysics 2020, 790, 228545. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.-Z.; Freymueller, J.T.; Bilham, R.; Larson, K.M.; Lai, X.a.; You, X.; Niu, Z.; Wu, J.; Li, Y.; et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science 2001, 294, 574–577. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Gan, W.; Zhang, P.; Shen, Z.-K.; Niu, Z.; Wang, M.; Wan, Y.; Zhou, D.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Xie, J.; Huang, G.; Liu, R.; Zhao, C.; Dai, J.; Jin, T.; Mo, F.; Zhen, Y.; Xi, S.; Tang, H.; et al. Design and Data Processing of China’s First Spaceborne Laser Altimeter System for Earth Observation: GaoFen-7. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1034–1044. [Google Scholar] [CrossRef]
- Zhu, X.; Ren, Z.; Nie, S.; Bao, G.; Ha, G.; Bai, M.; Liang, P. DEM Generation from GF-7 Satellite Stereo Imagery Assisted by Space-Borne LiDAR and Its Application to Active Tectonics. Remote Sens. 2023, 15, 1480. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Shang, J.; Zhu, S.; Chen, J. Qinghai-Tibet Plateau Glacier-DEM product derived from the Chinese stereo mapping satellites. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2024, XLVIII-1-2024, 311–316. [Google Scholar] [CrossRef]
- Hodge, M.; Biggs, J.; Fagereng, Å.; Elliott, A.; Mdala, H.; Mphepo, F. A semi-automated algorithm to quantify scarp morphology (SPARTA): Application to normal faults in southern Malawi. Solid Earth 2019, 10, 27–57. [Google Scholar] [CrossRef]
- Walsh, J.J.; Watterson, J. Distributions of cumulative displacement and seismic slip on a single normal fault surface. J. Struct. Geol. 1987, 9, 1039–1046. [Google Scholar] [CrossRef]
- Nicol, A.; Walsh, J.J.; Villamor, P.; Seebeck, H.; Berryman, K.R. Normal fault interactions, paleoearthquakes and growth in an active rift. J. Struct. Geol. 2010, 32, 1101–1113. [Google Scholar] [CrossRef]
- NASH, D.B. Morphologic dating of fluvial terrace scarps and fault scarps near West Yellowstone, Montana. GSA Bull. 1984, 95, 1413–1424. [Google Scholar] [CrossRef]
- Wallace, R.E. Profiles and ages of young fault scarps, north-central Nevada. Geol. Soc. Am. Bull. 1977, 88, 1267–1281. [Google Scholar] [CrossRef]
- Morewood, N.C.; Roberts, G.P. Comparison of surface slip and focal mechanism slip data along normal faults: An example from the eastern Gulf of Corinth, Greece. J. Struct. Geol. 2001, 23, 473–487. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Densmore, A.L.; Ellis, M.A.; Anderson, R.S. Landsliding and the evolution of normal-fault-bounded mountains. J. Geophys. Res. Solid Earth 1998, 103, 15203–15219. [Google Scholar] [CrossRef]
- Schlagenhauf, A.; Manighetti, I.; Benedetti, L.; Gaudemer, Y.; Finkel, R.; Malavieille, J.; Pou, K. Earthquake supercycles in Central Italy, inferred from 36Cl exposure dating. Earth Planet. Sci. Lett. 2011, 307, 487–500. [Google Scholar] [CrossRef]
- DuRoss, C.B.; Personius, S.F.; Crone, A.J.; Olig, S.S.; Hylland, M.D.; Lund, W.R.; Schwartz, D.P. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA. J. Geophys. Res. Solid Earth 2016, 121, 1131–1157. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, G.; Liu, F. Quantifying the Pabu Normal Fault Scarp, Southern Tibetan Plateau: Insights into Regional Earthquake Risk. Remote Sens. 2024, 16, 3473. https://doi.org/10.3390/rs16183473
Ha G, Liu F. Quantifying the Pabu Normal Fault Scarp, Southern Tibetan Plateau: Insights into Regional Earthquake Risk. Remote Sensing. 2024; 16(18):3473. https://doi.org/10.3390/rs16183473
Chicago/Turabian StyleHa, Guanghao, and Feng Liu. 2024. "Quantifying the Pabu Normal Fault Scarp, Southern Tibetan Plateau: Insights into Regional Earthquake Risk" Remote Sensing 16, no. 18: 3473. https://doi.org/10.3390/rs16183473
APA StyleHa, G., & Liu, F. (2024). Quantifying the Pabu Normal Fault Scarp, Southern Tibetan Plateau: Insights into Regional Earthquake Risk. Remote Sensing, 16(18), 3473. https://doi.org/10.3390/rs16183473