Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset
Abstract
:1. Introduction
Dataset | Method | Pathway | Temporal Resolution | Spatial Resolution | Unit | Study Period | Spatial Coverage | Reference |
---|---|---|---|---|---|---|---|---|
BEPS | EPM | C3 | day | 0.07° | gC/ | 1981–2019 | Global | Jv et al. (2021) [25] |
BESS | EPM | C3 | day | 0.05° | gC/ | 1982–2019 | Global | Li et al. (2023) [26] |
EC-LUE | LUE | C3/C4 | 8 days | 0.05° | kgC/ | 1982–2018 | Global | Zhang et al. (2020) [4] |
MODIS | LUE | C3/C4 | 8 days | 500 m | kgC/ | 2003–2022 | Global | Running et al. (2021) [27] |
VPM | LUE | C3/C4 | 8 days | 0.05° | kgC/ | 2000–2016 | Global | Zhang et al. (2017) [3] |
Random Forest | ML | C3 | 10 days | 0.10° | gC/ | 1999–2020 | Global | Zeng et al. (2020) [28] |
VODCA2GPP | VOD | C3 | 8 days | 0.25° | gC/ | 1988–2020 | Global | Benjamin et al. (2022) [29] |
GLO–PEM | LUE | C3/C4 | 8 days | 10 m | gC/ | 1981–2023 | China | Stephen et al. (1995) [10] |
GLASS | LUE | C3 | 8 days | 0.05° | gC/ | 1981–2018 | Global | Liang et al. (2021) [30] |
FluxSat v2.0 | ML | C3 | day | 0.05° | gC/ | 2000–2020 | Global | Joiner et al. (2019) [31] |
SMUrF | SIF | C3 | 4 days | 0.05° | gC/ | 2010–2019 | Region | Wu et al. (2021) [32] |
SiB4 | EPM | C3/C4 | Monthly | 0.50° | gC/ | 2000–2018 | Global | Haynes et al. (2021) [33] |
SMAP L4 | EPM | C3 | day | 0.09° | gC/ | 2015–2024 | Global | Kimball et al. (2021) [34] |
CARDAMOM | EPM | C3 | day | 0.50° | gC/ | 2001–2016 | USA | Yang et al. (2021) [35] |
NIRv-Index | SIF | C3 | day | 0.05° | gC/ | 1982–2018 | Global | Wang et al. (2020) [36] |
PML-V2 | LUE | C3/C4 | Monthly | 0.05° | gC/ | 1982–2014 | Global | Zhang et al. (2020) [37] |
PML-V2 | LUE | C3/C4 | 8 days | 0.05° | gC/ | 2002–2019 | Global | Chen et al. (2019) [38] |
BCC-ESM1 | EPM | C3/C4 | Monthly | 2.81° | gC/ | 1850–2014 | Global | Wu et al. (2020) [39] |
CNRM-CM6-1 | EPM | C3/C4 | Monthly | 1.41° | gC/ | 1850–2014 | Global | Program et al. (2019) [40] |
Neural Network | ML | C3 | 4 days | 0.05° | gC/ | 2000–2022 | Global | Zhang et al. (2018) [41] |
MuSyQ | LUE | C3 | 8 days | 0.05° | gC/ | 1981–2018 | Global | Wang et al. (2021) [42] |
Blue Carbon | EPM | C3 | 16 days | 250 m | gC/ | 2000–2019 | USA | Fergin et al. (2020) [43] |
2. Methods and Data
2.1. Model Description
2.2. Data Source
2.2.1. Data from Flux Tower
2.2.2. Data Driving the Model
2.3. Computation Platform
2.4. Data Analysis
3. Results
3.1. Model Validation
3.2. The Dynamic of Global GPP from 2000 to 2022
3.3. The Spatial Pattern of Global GPP
4. Discussion
4.1. Environmental Characteristics of Flux Towers Suitable for Validating GPP
4.2. Drivers of Global GPP Changes from 2000 to 2022
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Structure of the Model
Appendix A.1. Canopy Radiative Transfer
Appendix A.2. Two-Leaf Model
Appendix A.3. Stomatal Conductance
Appendix A.4. Sunrise and Sunset
Appendix A.5. Local Time
Appendix A.6. The Ratios of Photosynthesis in Sunrise and Sunset Time Zones
Appendix A.7. Photosynthesis
Appendix A.8. Photosynthesis of C3 Plants
Parameter | (J/mol) | (J/mol) | (J/mol/K) |
---|---|---|---|
65,330 | 149,250 | 485 | |
43,540 | 152,040 | 495 | |
46,390 | 150,650 | 490 | |
37,830 |
Appendix A.9. Photosynthesis of C4 Plants
Parameter | Value | Unit | Reference |
---|---|---|---|
7.5 | Medlyn et al., 2002 [112] | ||
0.01 | mol × mol−1 | Medlyn et al., 2002 [112] | |
2 | Oleson et al., 2010 [116] | ||
210 | mmol × mol−1 | ||
8.314 | JK−1 × mol−1 | ||
248 | mmol × mol−1 | Raj et al., 2014 [117] | |
404 | mol × mol−1 | Raj et al., 2014 [117] | |
1.2 | Raj et al., 2014 [117] | ||
2.1 | Raj et al., 2014 [117] | ||
2.0 | Raj et al., 2014 [117] | ||
2.0 | Oleson et al., 2010 [116] | ||
0.3 | Oleson et al., 2010 [116] | ||
313.15 | K | Oleson et al., 2010 [116] | |
0.2 | Oleson et al., 2010 [116] | ||
288.15 | K | Oleson et al., 2010 [116] | |
1.3 | Oleson et al., 2010 [116] | ||
328.15 | K | Oleson et al., 2010 [116] |
Appendix A.10. Photosynthesis of Nitrogen Content
Type | |||
---|---|---|---|
ENF | 42 | 0.012 | 0.04 |
EBF | 40 | 0.012 | 0.035 |
DNF | 25 | 0.024 | 0.055 |
DBF | 24 | 0.03 | 0.08 |
MF | 32 | 0.02 | 0.06 |
CSH | 42 | 0.012 | 0.04 |
OSH | 42 | 0.012 | 0.04 |
WSA | 25 | 0.03 | 0.09 |
SAV | 25 | 0.03 | 0.09 |
GRA | 25 | 0.045 | 0.12 |
WET | 42 | 0.012 | 0.04 |
CRO | 25 | 0.07 | 0.41 |
Appendix B. Information on the Eddy Covariance (EC) Sites
Type | Site ID | Latitude | Longitude | Period | RRMSE |
---|---|---|---|---|---|
CRO | US-Ne2 | 41.1649 | −96.4701 | 2001–2012 | 0.3401 |
CRO | FI-Jok | 60.8986 | 23.5134 | 2000–2003 | 0.6459 |
CRO | US-Twt | 38.1087 | −121.6531 | 2009–2014 | 0.1806 |
CRO | BE-Lon | 50.5516 | 4.7462 | 2004–2010 2012–2014 | 0.0836 0.3704 |
CRO | DE-RuS | 50.8659 | 6.4471 | 2011–2014 | 0.5154 |
CRO | DE-Kli | 50.8931 | 13.5224 | 2005–2011 | 0.4842 |
CRO | US-Ne1 | 41.1651 | −96.4766 | 2001–2012 | 0.2616 |
CRO | US-CRT | 41.6285 | −83.3471 | 2011–2013 | 0.3251 |
CRO | US-Ne3 | 41.1797 | −96.4397 | 2001–2012 | 0.2955 |
CRO | CH-Oe2 | 47.2864 | 7.7337 | 2004–2014 | 0.5637 |
CRO | DE-Geb | 51.0997 | 10.9146 | 2001–2014 | 0.6072 |
CRO | DE-Seh | 50.8706 | 6.4497 | 2008–2009 | 0.4000 |
DBF | DE-Hai | 51.0792 | 10.4522 | 2000–2012 | 0.3928 |
DBF | DE-Lnf | 51.3282 | 10.3678 | 2003–2006 2011–2013 | 0.4970 0.4344 |
DBF | DK-Sor | 55.4859 | 11.6446 | 2000–2013 | 0.3840 |
DBF | US-Oho | 41.5545 | −83.8438 | 2004–2013 | 0.2627 |
DBF | FR-Fon | 48.4764 | 2.7801 | 2005–2014 | 0.2886 |
DBF | IT-CA1 | 42.3804 | 12.0266 | 2014–2014 | 0.4927 |
DBF | IT-CA3 | 42.38 | 12.0222 | 2014–2014 | 0.6707 |
DBF | IT-Col | 41.8494 | 13.5881 | 2005–2014 | 0.6592 |
DBF | IT-PT1 | 45.2009 | 9.061 | 2002–2004 | 0.9705 |
DBF | IT-Ro1 | 42.4081 | 11.93 | 2001–2006 | 0.5207 |
DBF | IT-Ro2 | 42.3903 | 11.9209 | 2002–2008 2010–2011 | 0.5568 0.3531 |
DBF | JP-MBF | 44.3869 | 142.3186 | 2004–2005 | 0.4067 |
DBF | PA-SPn | 9.3181 | −79.6346 | 2008–2008 | 0.3329 |
DBF | US-Ha1 | 42.5378 | −72.1715 | 2000–2012 | 0.1150 |
DBF | US-MMS | 39.3232 | −86.4131 | 2000–2014 | 0.3791 |
DBF | CA-Oas | 53.6289 | −106.1978 | 2000–2010 | 0.6749 |
DBF | US-Wi3 | 46.6347 | −91.0987 | 2004–2004 | 0.1962 |
DBF | US-UMB | 45.5598 | −84.7138 | 2000–2014 | 0.2032 |
DBF | US-UMd | 45.5625 | −84.6975 | 2008–2014 | 0.2799 |
DBF | US-WCr | 45.8059 | −90.0799 | 2000–2006 2012–2014 | 0.2877 0.5901 |
DNF | RU-SkP | 62.255 | 129.168 | 2012–2014 | 1.1955 |
EBF | AU-Whr | −36.6732 | 145.0294 | 2012–2014 | 0.4912 |
EBF | CN-Din | 23.1733 | 112.5361 | 2003–2003 2005–2005 | 0.5219 0.4910 |
EBF | GH-Ank | 5.2685 | −2.6942 | 2011–2012 | 0.4864 |
EBF | AU-Wac | −37.4259 | 145.1878 | 2005–2008 | 0.1021 |
EBF | AU-Tum | −35.6566 | 148.1517 | 2001–2014 | 0.9606 |
EBF | AU-Wom | −37.4222 | 144.0944 | 2010–2014 | 0.4957 |
EBF | AU-Cum | −33.6152 | 150.7236 | 2012–2014 | 0.9677 |
EBF | FR-Pue | 43.7413 | 3.5957 | 2001–2014 | 0.4651 |
ENF | US-Me5 | 44.4372 | −121.5668 | 2000–2002 | 0.4521 |
ENF | FI-Sod | 67.3624 | 26.6386 | 2001–2014 | 0.4508 |
ENF | FI-Let | 60.6418 | 23.9595 | 2010–2012 | 0.5982 |
ENF | FI-Hyy | 61.8474 | 24.2948 | 2000–2014 | 0.6253 |
ENF | FR-LBr | 44.7171 | −0.7693 | 2000–2008 | 0.6623 |
ENF | US-Me6 | 44.3233 | −121.6078 | 2011–2014 | 0.2973 |
ENF | US-Prr | 65.1237 | −147.4876 | 2010–2014 | 0.3164 |
ENF | US-Me3 | 44.3154 | −121.6078 | 2004–2008 | 0.1513 |
ENF | NL-Loo | 52.1666 | 5.7436 | 2000–2014 | 0.1057 |
ENF | IT-Ren | 46.5869 | 11.4337 | 2002–2003 2005–2013 | 0.2438 0.9499 |
ENF | RU-Fyo | 56.4615 | 32.9221 | 2000–2014 | 0.0590 |
ENF | US-Blo | 38.8953 | −120.6328 | 2000–2007 | 1.5783 |
ENF | IT-La2 | 45.9542 | 11.2853 | 2001–2001 | 0.6657 |
ENF | US-Wi4 | 46.7393 | −91.1663 | 2002–2005 | 0.0204 |
ENF | US-Me2 | 44.4523 | −121.5574 | 2002–2014 | 0.0919 |
ENF | IT-Lav | 45.9562 | 11.2813 | 2003–2014 | 0.6185 |
ENF | US-GLE | 41.3665 | −106.2399 | 2005–2014 | 0.2307 |
ENF | CN-Qia | 26.7414 | 115.0581 | 2003–2005 | 0.2926 |
ENF | DE-Tha | 50.9626 | 13.5651 | 2000–2014 | 0.5088 |
ENF | CA-NS3 | 55.9117 | −98.3822 | 2001–2005 | 0.4440 |
ENF | US-NR1 | 40.0329 | −105.5464 | 2000–2014 | 0.3379 |
ENF | CA-SF2 | 54.2539 | −105.8775 | 2003–2004 | 0.7883 |
ENF | CA-SF1 | 54.485 | −105.8176 | 2004–2005 | 0.7912 |
ENF | CA-NS2 | 55.9058 | −98.5247 | 2001–2004 | 0.5028 |
ENF | CA-NS4 | 55.9144 | −98.3806 | 2002–2005 | 0.7572 |
ENF | CZ-BK1 | 49.5021 | 18.5369 | 2004–2014 | 0.2705 |
ENF | CA-Man | 55.8796 | −98.4808 | 2000–2004 | 0.5992 |
ENF | CA-Qfo | 49.6925 | −74.3421 | 2004–2010 | 0.7685 |
ENF | DE-Lkb | 49.0996 | 13.3047 | 2009–2013 | 0.5555 |
ENF | CA-NS5 | 55.8631 | −98.485 | 2002–2005 | 0.7947 |
ENF | CA-NS1 | 55.8792 | −98.4839 | 2002–2005 | 0.7684 |
GRA | AT-Neu | 47.1167 | 11.3175 | 2002–2012 | 0.9405 |
GRA | US-AR1 | 36.4267 | −99.42 | 2009–2012 | 1.4371 |
GRA | US-Wkg | 31.7365 | −109.9419 | 2006–2014 | 0.1482 |
GRA | RU-Tks | 71.5943 | 128.8878 | 2012–2014 | 0.1329 |
GRA | US-AR2 | 36.6358 | −99.5975 | 2010–2011 | 0.1587 |
GRA | RU-Ha1 | 54.7252 | 90.0022 | 2003–2004 | 0.1047 |
GRA | PA-SPs | 9.3138 | −79.6314 | 2007–2009 | 0.0382 |
GRA | US-Goo | 34.2547 | −89.8735 | 2003–2006 | 0.2912 |
GRA | CH-Cha | 47.2102 | 8.4104 | 2005–2014 | 0.8429 |
GRA | DE-RuR | 50.6219 | 6.3041 | 2012–2014 | 0.3521 |
GRA | CH-Oe1 | 47.2858 | 7.7319 | 2002–2008 | 0.5104 |
GRA | AU-Ync | −34.9893 | 146.2907 | 2013–2013 | 0.1063 |
GRA | US-SRG | 31.7894 | −110.8277 | 2008–2014 | 0.2094 |
GRA | DE-Gri | 50.95 | 13.5126 | 2004–2011 | 0.4390 |
GRA | CZ-BK2 | 49.4944 | 18.5429 | 2006–2012 | 0.3105 |
GRA | CH-Fru | 47.1158 | 8.5378 | 2006–2008 2010–2014 | 0.7539 1.9716 |
GRA | CN-Du2 | 42.0467 | 116.2836 | 2007–2008 | 0.1365 |
GRA | IT-MBo | 46.0147 | 11.0458 | 2003–2013 | 0.6747 |
GRA | CN-Cng | 44.5934 | 123.5092 | 2007–2010 | 0.5325 |
GRA | AU-DaP | −14.0633 | 131.3181 | 2007–2013 | 0.9532 |
GRA | CN-HaM | 37.37 | 101.18 | 2002–2004 | 0.2041 |
GRA | AU-Stp | −17.1507 | 133.3502 | 2009–2014 | 0.9670 |
MF | CA-Gro | 48.2167 | −82.1556 | 2003–2013 | 0.6731 |
MF | BE-Bra | 51.3076 | 4.5198 | 2004–2014 | 0.0282 |
MF | JP-SMF | 35.2617 | 137.0788 | 2003–2006 | 0.2723 |
MF | BE-Vie | 50.3049 | 5.9981 | 2000–2014 | 0.7275 |
MF | CN-Cha | 42.4025 | 128.0958 | 2003–2005 | 0.7002 |
MF | CH-Lae | 47.4783 | 8.3644 | 2004–2014 | 2.0494 |
MF | US-PFa | 45.9459 | −90 | 2000–2014 | 0.1197 |
MF | US-Syv | 46.2420 | −89.3477 | 2001–2006 2012–2014 | 0.3828 0.3959 |
OSH | CA-NS6 | 55.9167 | −98.9644 | 2001–2005 | 0.7761 |
OSH | US-SRC | 31.9083 | −110.8395 | 2008–2012 | 0.0910 |
OSH | RU-Cok | 70.8291 | 147.4943 | 2008–2009 | 0.0062 |
OSH | CA-NS7 | 56.6358 | −99.9483 | 2002–2005 | 0.7375 |
OSH | ES-LgS | 37.0979 | −2.9658 | 2007–2008 | 0.4493 |
OSH | CA-SF3 | 54.0916 | −106.0053 | 2002–2006 | 0.8128 |
OSH | US-Whs | 31.7438 | −110.0522 | 2008–2014 | 0.0364 |
OSH | US-Sta | 41.3966 | −106.8024 | 2007–2009 | 0.0634 |
SAV | SN-Dhr | 15.4028 | −15.4322 | 2012–2013 | 0.2812 |
SAV | SD-Dem | 13.2829 | 30.4783 | 2007–2009 | 0.2843 |
SAV | ZA-Kru | −25.0197 | 31.4969 | 2010–2011 | 0.2859 |
SAV | AU-DaS | −14.1593 | 131.3881 | 2011–2014 | 0.9589 |
SAV | AU-Dry | −15.2588 | 132.3706 | 2008–2014 | 0.9672 |
WET | AU-Fog | −12.5452 | 131.3072 | 2006–2007 | 0.9744 |
WET | US-Tw1 | 38.1074 | −121.6469 | 2013–2014 | 0.3446 |
WET | FI-Lom | 67.9972 | 24.2092 | 2007–2009 | 0.5926 |
WET | US-Atq | 70.4696 | −157.4089 | 2004–2008 | 0.2103 |
WET | CN-Ha2 | 37.6086 | 101.3269 | 2003–2005 | 0.2454 |
WET | CZ-wet | 49.0247 | 14.7704 | 2006–2014 | 0.0591 |
WET | DE-Akm | 53.8662 | 13.6834 | 2010–2013 | 0.5076 |
WET | DE-Spw | 51.8922 | 14.0337 | 2011–2014 | 0.4785 |
WET | US-Los | 46.0827 | −89.9792 | 2001–2006 | 0.3117 |
WET | US-Ivo | 68.4865 | −155.7503 | 2004–2007 | 0.2463 |
WSA | AU-How | −12.4943 | 131.1523 | 2002–2005 2007–2014 | 0.9185 0.9785 |
WSA | AU-Ade | −13.0769 | 131.1178 | 2007–2009 | 0.9185 |
WSA | US-Ton | 38.4309 | −120.966 | 2001–2014 | 0.5003 |
WSA | US-SRM | 31.8214 | −110.8661 | 2004–2014 | 0.0726 |
References
- Cui, T.; Sun, R.; Qiao, C.; Zhang, Q.; Yu, T.; Liu, G.; Liu, Z. Estimating diurnal courses of gross primary production for maize: A comparison of sun-induced chlorophyll fluorescence, light-use efficiency and process-based models. Remote Sens. 2017, 9, 1267. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial Primary Production for the Conterminous United States Derived from Landsat 30 m and MODIS 250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Reynolds, J.F. Statistical Ecology: A Primer in Methods and Computing; John Wiley & Sons: Hoboken, NJ, USA, 1988; Volume 1. [Google Scholar]
- Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Running, S.W.; Hunt, E.R., Jr. Generalization of a forest ecosystem process model for other biomes, BIOME-BCG, and an application for global-scale models. In Scaling Physiological Processes; Academic Press: San Diego, CA, USA, 1993. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815–835. [Google Scholar] [CrossRef]
- Running, S.W.; Zhao, M. Daily GPP and Annual NPP (MOD17A2H/A3H) and Year-end Gap- Filled (MOD17A2HGF/A3HGF) Products NASA Earth Observing System MODIS Land Algorithm (For Collection 6) 2019. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD17UsersGuide2019.pdf (accessed on 28 September 2024).
- Sasai, T.; Ichii, K.; Yamaguchi, Y.; Nemani, R. Simulating terrestrial carbon fluxes using the new biosphere model “biosphere model integrating eco-physiological and mechanistic approaches using satellite data”(BEAMS). J. Geophys. Res. Biogeosciences 2005, 110, G01010. [Google Scholar] [CrossRef]
- Veroustraete, F.; Sabbe, H.; Eerens, H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sens. Environ. 2002, 83, 376–399. [Google Scholar] [CrossRef]
- Bloomfield, K.J.; Stocker, B.D.; Keenan, T.F.; Prentice, I.C. Environmental controls on the light use efficiency of terrestrial gross primary production. Glob. Chang. Biol. 2023, 29, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.M.; Ogle, K.; Peltier, D.; Walker, A.P.; De Kauwe, M.G.; Medlyn, B.E.; Williams, D.G.; Parton, W.; Asao, S.; Guenet, B.; et al. Gross primary production responses to warming, elevated CO2, and irrigation: Quantifying the drivers of ecosystem physiology in a semiarid grassland. Glob. Chang. Biol. 2017, 23, 3092–3106. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Maeirsperger, T.K.; Gower, S.T.; Kirschbaum, A.A.; Running, S.W.; Zhao, M.; Wofsy, S.C.; Dunn, A.L. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob. Chang. Biol. 2005, 11, 666–684. [Google Scholar] [CrossRef]
- Still, C.J.; Berry, J.A.; Collatz, G.J.; DeFries, R.S. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Glob. Biogeochem. Cycles 2003, 17, 6-1–6-14. [Google Scholar] [CrossRef]
- Still, C.; Berry, J.; Ribas-Carbo, M.; Helliker, B. The contribution of C3 and C4 plants to the carbon cycle of a tallgrass prairie: An isotopic approach. Oecologia 2003, 136, 347–359. [Google Scholar] [CrossRef]
- Shimoda, S.; Murayama, S.; Mo, W.; Oikawa, T. Seasonal contribution of C3 and C4 species to ecosystem respiration and photosynthesis estimated from isotopic measurements of atmospheric CO2 at a grassland in Japan. Agric. For. Meteorol. 2009, 149, 603–613. [Google Scholar] [CrossRef]
- Collatz, G.; Berry, J.; Clark, J. Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C-4 Grasses: Present, Past, and Future. Oecologia 1998, 114, 441–454. [Google Scholar] [CrossRef]
- Shimoda, S.; Mo, W.; Oikawa, T. The Effects of Characteristics of Asian Monsoon Climate on Interannual CO2 Exchange in a Humid Temperate C3/C4 Co-occurring Grassland. SOLA 2005, 1, 169–172. [Google Scholar] [CrossRef]
- Kjelgaard, J.; Heilman, J.; McInnes, K.; Owens, M.; Kamps, R. Carbon dioxide exchange in a subtropical, mixed C3/C4 grassland on the Edwards Plateau, Texas. Agric. For. Meteorol. 2008, 148, 953–963. [Google Scholar] [CrossRef]
- Luo, X.; Keenan, T.F.; Chen, J.M.; Croft, H.; Colin Prentice, I.; Smith, N.G.; Walker, A.P.; Wang, H.; Wang, R.; Xu, C. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat. Commun. 2021, 12, 4866. [Google Scholar] [CrossRef]
- Walker, A.P.; Quaife, T.; Van Bodegom, P.M.; De Kauwe, M.G.; Keenan, T.F.; Joiner, J.; Lomas, M.R.; MacBean, N.; Xu, C.; Yang, X. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. New Phytol. 2017, 215, 1370–1386. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.M.; Zhou, Y.L. Global Daily GPP Simulation Data Products from 1981 to 2019. 2021. Available online: http://www.nesdc.org.cn/sdo/detail?id=612f42ee7e28172cbed3d809 (accessed on 22 March 2024).
- Li, B.; Ryu, Y.; Jiang, C.; Dechant, B.; Liu, J.; Yan, Y.; Li, X. BESSv2.0: A Satellite-Based and Coupled-Process Model for Quantifying Long-Term Global Land–Atmosphere Fluxes. Remote Sens. Environ. 2023, 295, 113696. [Google Scholar] [CrossRef]
- Steve, R. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V061. 2021. Available online: https://lpdaac.usgs.gov/products/mod17a2hv061/ (accessed on 22 March 2022).
- Yanlian, Z. A Data-driven Upscale Product of Global Gross Primary Production, Net Ecosystem Exchange and Ecosystem Respiration. 2020. Available online: https://www.nies.go.jp/doi/10.17595/20200227.001-e.html (accessed on 4 September 2024).
- Wild, B.; Teubner, I.; Moesinger, L.; Zotta, R.M.; Forkel, M.; van der Schalie, R.; Sitch, S.; Dorigo, W. VODCA2GPP—A New, Global, Long-Term (1988–2020) Gross Primary Production Dataset from Microwave Remote Sensing. Earth Syst. Sci. Data 2022, 14, 1063–1085. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Koehler, P.; Frankenberg, C.; Parazoo, N.C. L2 Daily Solar-Induced Fluorescence (SIF) from ERS-2 GOME, 1995–2003. ORNL DAAC 2019. [Google Scholar] [CrossRef]
- Wu, D.; Lin, J.C. Urban Biogenic CO2 Fluxes: GPP, Reco and NEE Estimates from SMUrF, 2010–2019; ORNL DAAC: Oak Ridge, TN, USA, 2021. [Google Scholar]
- Haynes, K.D.; Baker, I.T.; Denning, A.S. SiB4 Modeled Global 0.5-Degree Monthly Carbon Fluxes and Pools, 2000–2018; ORNL DAAC: Oak Ridge, TN, USA, 2021. [Google Scholar]
- Kimball, J.S.; Jones, L.A.; Kundig, T.; Reichle, R. SMAP L4 Global Daily 9 Km EASE-Grid Carbon Net Ecosystem Exchange; NSIDC: Boulder, CO, USA, 2021; Volume 6. [Google Scholar]
- Yang, Y.; Saatchi, S.S. CMS: Terrestrial Carbon Stocks, Emissions, and Fluxes for Conterminous US, 2001–2016. ORNL DAAC 2021. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1837 (accessed on 4 September 2023).
- Wang, S.; Zhang, Y. Long-Term (1982–2018) Global Gross Primary Production Dataset Based on NIRv. A Big Earth Data Platform for Three Poles. 2020. Available online: https://figshare.com/articles/dataset/Long-term_1982-2018_global_gross_primary_production_dataset_based_on_NIRv/12981977/2 (accessed on 4 September 2023).
- Chen, Z.; Nong, X.; Zang, C.; Ou, W.; Qiu, L. Evolution of Evapotranspiration in the Context of Land Cover/Climate Change in the Han River Catchment of China. Hydrol. Process. 2024, 38, e15265. [Google Scholar] [CrossRef]
- Zhang, Y. PML_V2 Global Evapotranspiration and Gross Primary Production (2002.07–2019.08). National Tibetan Plateau Data Center 2020; Volume 10. Available online: https://cstr.cn/18406.11.Geogra.tpdc.270251 (accessed on 4 September 2023).
- Wu, T.; Zhang, F.; Zhang, J.; Jie, W.; Zhang, Y.; Wu, F.; Li, L.; Yan, J.; Liu, X.; Lu, X.; et al. Beijing Climate Center Earth System Model Version 1 (BCC-ESM1): Model Description and Evaluation of Aerosol Simulations. Geosci. Model Dev. 2020, 13, 977–1005. [Google Scholar] [CrossRef]
- Program, F. Global Vegetation Productivity Monthly Data Obtained by CNRM-CM6-1 Mode of CMIP6 (1850–2014). National Tibetan Plateau/Third Pole Environment Data Center. 2019. Available online: https://data.tpdc.ac.cn/en/data/30d6b383-7349-40fd-9c13-8a3c6c02d7e4/ (accessed on 28 September 2024).
- Zhang, Y.; Joiner, J.; Alemohammad, S.H.; Zhou, S.; Gentine, P. A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks. Biogeosciences 2018, 15, 5779–5800. [Google Scholar] [CrossRef]
- Wang, J.; Sun, R.; Zhang, H.; Xiao, Z.; Zhu, A.; Wang, M.; Yu, T.; Xiang, K. New Global MuSyQ GPP/NPP Remote Sensing Products from 1981 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 5596–5612. [Google Scholar] [CrossRef]
- Feagin, R.A.; Forbrich, I.; Huff, T.P.; Barr, J.G.; Ruiz-Plancarte, J.; Fuentes, J.D.; Najjar, R.G.; Vargas, R.; Vazquez-Lule, A.; Windham-Myers, L. Gross Primary Production Maps of Tidal Wetlands across Conterminous USA, 2000–2019. ORNL DAAC 2020. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1792 (accessed on 4 September 2023).
- Mahat, V.; Tarboton, D.G. Canopy radiation transmission for an energy balance snowmelt model. Water Resour. Res. 2012, 48, 10438. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evaporation. 1979. Available online: https://nora.nerc.ac.uk/id/eprint/5783/1/IH_056.pdf (accessed on 28 September 2024).
- Shang, H. Mapping Global Gross Primary Productivity on the Google Earth Engine Platform–Developing and Applying an Improved Process-Based Ecosystem Model. Ph.D. Thesis, The State University of New Jersey, School of Graduate Studies, Rutgers, NJ, USA, 2023. [Google Scholar]
- Nijssen, B.; Lettenmaier, D.P. A simplified approach for predicting shortwave radiation transfer through boreal forest canopies. J. Geophys. Res. Atmos. 1999, 104, 27859–27868. [Google Scholar] [CrossRef]
- Spitters, C.; Toussaint, H.; Goudriaan, J. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation. Agric. For. Meteorol. 1986, 38, 217–229. [Google Scholar] [CrossRef]
- Wang, Y.P.; Leuning, R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric. For. Meteorol. 1998, 91, 89–111. [Google Scholar] [CrossRef]
- Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 1995, 18, 339–355. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Collatz, G.J.; Miquel, R.C.; Berry, J.A. Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants. Aust. J. Plant Physiol. 1992, 19, 519–538. [Google Scholar] [CrossRef]
- Rogers, A. The use and misuse of Vmax in Earth System Models. Photosynth Res. 2014, 119, 15–29. [Google Scholar] [CrossRef]
- Fang, H.; Wei, S. The global clumping index dataset at 8-day temporal resolution and 500- metres spatial resolution from 2001 to 2019. 2021. Available online: http://www.nesdc.org.cn/sdo/detail?id=60fd0a417e28176012d3a71a (accessed on 28 September 2024).
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present. 2019. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview (accessed on 6 September 2023).
- Barnes, W.L.; Xiong, X.; Salomonson, V.V. Status of terra MODIS and aqua MODIS. Adv. Space Res. 2003, 32, 2099–2106. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, d.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kennedy, R.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Ma, B.; Xu, M. Identifying Outliers of the MODIS Leaf Area Index Data by Including Temporal Patterns in Post-Processing. Remote Sens. 2023, 15, 5042. [Google Scholar] [CrossRef]
- Wang, S.; Xu, M.; Zhang, X.; Wang, Y. Fitting Nonlinear Equations with the Levenberg–Marquardt Method on Google Earth Engine. Remote Sens. 2022, 14, 2055. [Google Scholar] [CrossRef]
- Wei, S.; Fang, H. Estimation of canopy clumping index from MISR and MODIS sensors using the normalized difference hotspot and darkspot (NDHD) method: The influence of BRDF models and solar zenith angle. Remote Sens. Environ. 2016, 187, 476–491. [Google Scholar] [CrossRef]
- Wei, S.; Fang, H.; Schaaf, C.B.; He, L.; Chen, J.M. Global 500 m clumping index product derived from MODIS BRDF data (2001–2017). Remote Sens. Environ. 2019, 232, 111296. [Google Scholar] [CrossRef]
- R Core Team, R. R: A Language and Environment for Statistical Computing; R Core Team: New York, NY, USA, 2013. [Google Scholar]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Shi, Y.F.; Shi, S.H.; Huang, X.M. The application of structural equation modeling in ecology based on R. Chin. J. Ecol. 2022, 41, 1015. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 1–12. [Google Scholar] [CrossRef]
- Grace, J.B.; Anderson, T.M.; Olff, H.; Scheiner, S.M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 2010, 80, 67–87. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ju, W.; Dai, S.; He, W.; Song, L.; Wang, S.; Li, X.; Mao, G. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing-driven process model. J. Geophys. Res. Biogeosciences 2021, 126, e2020JG005944. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G. Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences 2014, 11, 2583–2599. [Google Scholar] [CrossRef]
- Tagesson, T.; Tian, F.; Schurgers, G.; Horion, S.; Scholes, R.; Ahlström, A.; Ardö, J.; Moreno, A.; Madani, N.; Olin, S.; et al. A physiology-based Earth observation model indicates stagnation in the global gross primary production during recent decades. Glob. Chang. Biol. 2021, 27, 836–854. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the Eddy Covariance Technique for Evaluating Carbon Dioxide Exchange Rates of Ecosystems: Past, Present and Future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Xiao, J.; Davis, K.J.; Urban, N.M.; Keller, K.; Saliendra, N.Z. Upscaling Carbon Fluxes from Towers to the Regional Scale: Influence of Parameter Variability and Land Cover Representation on Regional Flux Estimates. J. Geophys. Res. Biogeosciences 2011, 116, e2011JG001764. [Google Scholar] [CrossRef]
- Stoy, P.C.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.A.; Arneth, A.; Aurela, M.; Bernhofer, C. A Data-Driven Analysis of Energy Balance Closure across FLUXNET Research Sites: The Role of Landscape Scale Heterogeneity. Agric. For. Meteorol. 2013, 171, 137–152. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Xiao, J.; Ollinger, S.V.; Frolking, S.; Hurtt, G.C.; Hollinger, D.Y.; Davis, K.J.; Pan, Y.; Zhang, X.; Deng, F.; Chen, J. Data-Driven Diagnostics of Terrestrial Carbon Dynamics over North America. Agric. For. Meteorol. 2014, 197, 142–157. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J. Global Patterns of Land-atmosphere Fluxes of Carbon Dioxide, Latent Heat, and Sensible Heat Derived from Eddy Covariance, Satellite, and Meteorological Observations. J. Geophys. Res. Biogeosciences 2011, 116, e2011JG001715. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Zhang, X.; Tani, H.; Guo, E.; Yin, S.; Zhang, T. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci. Total Environ. 2019, 668, 696–713. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Yamamoto, H.; Tani, H.; Zhong, G.; Yin, S.; Guo, E. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: Climatic factors, CO2 concentration and land-cover change, 1982–2015. Ecol. Inform. 2018, 46, 156–165. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Z.; Zhao, W.; Li, M.; Cao, S.; Zheng, Y.; Tian, F.; Myneni, R.B. The direct and indirect effects of the environmental factors on global terrestrial gross primary productivity over the past four decades. Environ. Res. Lett. 2023, 19, 014052. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Wang, K.; Li, X.; Bastos, A.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Sitch, S. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 2020, 26, 300–318. [Google Scholar] [CrossRef]
- Lan, X.; Tans, P.; Thoning, K.W. Trends in Globally-Averaged CO2 Determined from NOAA Global Monitoring Laboratory Measurements. 2024. Available online: https://gml.noaa.gov/ccgg/trends/global.html?doi=10.15138/9n0h-zh07 (accessed on 23 February 2024).
- Masarie, K.A.; Tans, P.P. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. Atmos. 1995, 100, 11593–11610. [Google Scholar] [CrossRef]
- Change, N.G.C. Global Surface Temperature|NASA Global Climate Change. 2024. Available online: https://climate.nasa.gov/vital-signs/global-temperature/?intent=121 (accessed on 28 September 2024).
- Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 2016, 40, 178–187. [Google Scholar] [CrossRef]
- Norby, R.J.; Wullschleger, S.D.; Gunderson, C.A.; Johnson, D.W.; Ceulemans, R. Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant Cell Environ. 1999, 22, 683–714. [Google Scholar] [CrossRef]
- Schimel, D.; Stephens, B.B.; Fisher, J.B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 2015, 112, 436–441. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Z.; Zhu, X.F.; Liu, T.T.; Xu, K.; Guo, R. Response of Gross Primary Production to Drought under Climate Change in Different Vegetation Regions of China. Acta Ecol. Sin. 2022, 42, 3429–3440. [Google Scholar] [CrossRef]
- Knutson, T.R.; Delworth, T.L.; Dixon, K.W.; Stouffer, R.J. Model Assessment of Regional Surface Temperature Trends (1949–1997). J. Geophys. Res. Atmos. 1999, 104, 30981–30996. [Google Scholar] [CrossRef]
- Available online: https://www.sciencedirect.com/science/article/abs/pii/S1574954118300219?via%3Dihub (accessed on 28 September 2024).
- Xixi, Y.; Xu, Y.; Hao, Z.; Yimian, M.; Chenguang, T.; Yang, C.; Yadong, L. Interannual variability of gross primary productivity at global FLUXNET sites and its driving factors. Trans. Atmos. Sci. 2021, 43, 1106–1114. [Google Scholar] [CrossRef]
- Turner, D.P.; Urbanski, S.; Bremer, D.; Wofsy, S.C.; Meyers, T.; Gower, S.T.; Gregory, M. A Cross-biome Comparison of Daily Light Use Efficiency for Gross Primary Production. Glob. Chang. Biol. 2003, 9, 383–395. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global Estimates of Evapotranspiration and Gross Primary Production Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L. A New Model of Gross Primary Productivity for North American Ecosystems Based Solely on the Enhanced Vegetation Index and Land Surface Temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Heinsch, F.A.; Zhao, M.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M. Evaluation of Remote Sensing Based Terrestrial Productivity from MODIS Using Regional Tower Eddy Flux Network Observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G. Predicting Carbon Dioxide and Energy Fluxes across Global FLUXNET Sites with Regression Algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef]
- Sitch, S.; Huntingford, C.; Gedney, N.; Levy, P.E.; Lomas, M.; Piao, S.L.; Betts, R.; Ciais, P.; Cox, P.; Friedlingstein, P. Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate-carbon Cycle Feedbacks Using Five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 2008, 14, 2015–2039. [Google Scholar] [CrossRef]
- Fisher, J.B.; Sikka, M.; Oechel, W.C.; Huntzinger, D.N.; Melton, J.R.; Koven, C.D.; Ahlström, A.; Arain, M.A.; Baker, I.; Chen, J.M. Carbon Cycle Uncertainty in the Alaskan Arctic. Biogeosciences 2014, 11, 4271–4288. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- Dai, Y.; Dickinson, R.E.; Wang, Y.P. A Two Big Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Press, W.H.; Vetterling, W.T.; Teukolsky, S.A.; Flannery, B.P. Numerical Recipes Example Book; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Abramowitz, M.; Stegun, I.A.; Romer, R.H. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; American Association of Physics Teachers: College Park, MD, USA, 1988. [Google Scholar]
- Panek, J.A.; Goldstein, A.H. A controlled field experiment on the relation between drought stress, photosynthesis and stomatal conductance: Implications for carbon storage and ozone deposition. Tree Physiol. 2001, 21, 337–344. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Dreyer, E.; Ellsworth, D.; Forstreuter, M.; Harley, P.C.; Kirschbaum, M.U.F.; Le Roux, X.; Montpied, P.; Strassemeyer, J.; Walcroft, A. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 2002, 25, 1167–1179. [Google Scholar] [CrossRef]
- Yoder, R.E.; Odhiambo, L.O.; Wright, W.C. Effects of vapor-pressure deficit and net-irradiance calculation methods on accuracy of standardized Penman-Monteith equation in a humid climate. J. Irrig. Drain. Eng. 2005, 131, 228–237. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Singsaas, E.L.; Pimentel, C.; Portis, A.R., Jr.; Long, S.P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 2001, 24, 253–259. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J. Geophys. Res. Biogeosciences 2011, 116, JG001593. [Google Scholar] [CrossRef]
- Oleson, K.W.; Lawrence, D.M.; Bonan, G.B.; Drewniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.; Riley, W.J.; Subin, Z.M. Technical description of version 5.0 of the Community Land Model (CLM), NCAR Tech. Notes 2010, 605, e2010NCAR-605. [Google Scholar]
- Raj, R.; Hamm, N.; Nicholas, A.S.; van der Tol, C.; Stein, A. Variance-Based Sensitivity Analysis of BIOME-BGC for Gross and Net Primary Production. Ecol. Model. 2014, 292, 26–36. [Google Scholar] [CrossRef]
Product | Spatial Resolution | Temporal Resolution | Study Period | Reference |
---|---|---|---|---|
GPP | 0.1° × 0.1° | 1-Day | 2000–2022 | (This study) |
C3/C4 | 0.1° × 0.1° | 1-Year | Mean | Still et al., 2003 [18] |
CI | 0.1° × 0.1° | 1-Year | 2001–2019 | Fang & Wei, 2021 [54] |
D2m | 0.1° × 0.1° | 1-Hour | 2000–2022 | Balsamo et al., 2015 [55] |
T2m | 0.1° × 0.1° | 1-Hour | 2000–2022 | Balsamo et al., 2015 [55] |
SSRD | 0.1° × 0.1° | 1-Hour | 2000–2022 | Muñoz Sabater, 2019 [56] |
LAI | 0.1° × 0.1° | 1-Day | 2000–2022 | Barnes et al., 2003 [57] |
Landcover | 0.1° × 0.1° | 1-Year | 2000–2022 | Barnes et al., 2003 [57] |
Model | (Compared to Our Study) | p Value (Compared to Our Study) | Linear Regressions | p Value | |
---|---|---|---|---|---|
Our study | 1 | <0.001 | 0.8633 | <0.001 | |
BEPS | 0.767 | <0.001 | 0.9758 | <0.001 | |
MODIS | 0.657 | <0.001 | 0.8077 | <0.001 | |
VPM | 0.765 | <0.001 | 0.9636 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, X.; Hou, L.; Sun, J.; Xu, M. Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset. Remote Sens. 2024, 16, 3731. https://doi.org/10.3390/rs16193731
Wang S, Zhang X, Hou L, Sun J, Xu M. Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset. Remote Sensing. 2024; 16(19):3731. https://doi.org/10.3390/rs16193731
Chicago/Turabian StyleWang, Shujian, Xunhe Zhang, Lili Hou, Jiejie Sun, and Ming Xu. 2024. "Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset" Remote Sensing 16, no. 19: 3731. https://doi.org/10.3390/rs16193731
APA StyleWang, S., Zhang, X., Hou, L., Sun, J., & Xu, M. (2024). Estimating Global Gross Primary Production Using an Improved MODIS Leaf Area Index Dataset. Remote Sensing, 16(19), 3731. https://doi.org/10.3390/rs16193731