Characteristics and Tectonic Implications of the Geomorphic Indices of the Watersheds Around the Lijiang–Jinpingshan Fault
Abstract
:1. Introduction
2. Regional Geological Overview
3. Data and Methods
3.1. Data
3.2. Extracting Watersheds
3.3. Geomorphic Indices
3.3.1. Slope and Relief Degree of the Land Surface (RDLS)
3.3.2. Hypsometric Integral (HI)
3.3.3. Channel Steepness Index (ksn)
3.4. Strip Terrain Profiles
3.5. Correlation Analysis
4. Results
4.1. The Result of Slope and Relief Degree of the Land Surface (RDLS)
4.2. The Result of Hypsometric Integral (HI)
4.3. The Result of Channel Steepness Index (ksn)
4.4. The Result of Strip Terrain Profile
5. Discussion
5.1. Climatic Factors
5.2. Lithology
5.3. Tectonics
6. Conclusions
- (1)
- The spatial distribution of climate and lithology have no significant correlation with the spatial distribution of geomorphic indices. The results of Spearman correlation analysis also further revealed no correlation among the three. This study shows that climate and lithology are not the controlling factors of the geomorphic evolution around the LJF.
- (2)
- Tectonic activity is the dominant factor controlling the geomorphic evolution around the LJF, and the geomorphic indices convey the tectonic information of the LJF. The spatial distribution of the geomorphic indices reflects that the uplift of the northwest side of the LJF caused by the vertical activity of the LJF is higher than that of the southeast side and reveals that the vertical activity along the fault direction from northeast to southwest shows a gradual declining trend. In addition, with the north of Muli as the boundary, the geomorphic indices of the sub–watersheds in the northeast of Muli are significantly higher than those in the south, indicating that the LJF is segmented at this location. Taking the north side of the Lijiang basin as the boundary, the geomorphic indices show the change in fault activity pattern, confirming the rationality of the Lijiang basin as a stepover, which is consistent with the results of geological research. The Ninglang–Muli section is divided by the indices of the mutation zone, which corresponds to the geometric distribution and tectonic transition of the LJF on the north side of Ninglang.
- (3)
- The elevation of the strip terrain profiles in the northwest direction of the LJF is significantly greater than in the southeast direction, and there is an obvious vertical activity response at the LJF. The average elevation of the profile from southwest to northeast constantly increases. The results of the strip terrain profiles verify the rationality of the results of the geomorphic indices.
- (4)
- The results of tectonic geomorphology in this study are consistent with those of geology and geodesy in previous studies conducted by other researchers, which indicates that the spatial distribution of geomorphic indices can be used to indicate the variation trends of differential uplift and tectonic rates caused by fault activity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Molnar, P.H.; Tapponnier, P. Cenozoic tectonics of Asia: Effects of a continental collision. Nature 1975, 189, 419–426. [Google Scholar]
- Qiao, X.; Wang, Q.; Du, R. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region. Chin. J. Geophys. 2004, 47, 805–811. [Google Scholar]
- Wang, Y.; Shen, J.; Wang, Q.; Xiong, X. On the lateral extrusion of Sichuan-Yunnan block (Chuandian block). Earth Sci. Front. 2003, 10, 188–192. [Google Scholar]
- Han, Z.; Xiang, H.; Guo, S. Sinistral shear and extension of the northern section of Lijiang Basin in northwest Yunnan in Quaternary. Chin. Sci. Bulletin. 2005, 50, 452–459. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y. Principles of Geomorphology, 3rd ed.; Peking University Press: Beijing, China, 2017. [Google Scholar]
- Hack, J.T. Stream-profile analysis and stream-gradient index. J. Res. Us Geol. Surv. 1973, 1, 421–429. [Google Scholar]
- Jaiswara, N.K.; Kotluri, S.K.; Pandey, P.; Pandey, A.K. MATLAB functions for extracting hypsometry, stream-length gradient index, steepness index, chi gradient of channel and swath profiles from digital elevation model (DEM) and other spatial data for landscape characterisation. Appl. Comput. Geosci. 2020, 7, 100033. [Google Scholar] [CrossRef]
- Owen, L.A. 5.2 Tectonic Geomorphology: A Perspective. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 3–12. [Google Scholar]
- Wobus, C.; Heimsath, A.; Whipple, K.; Hodges, K. Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 2005, 434, 1008–1011. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Jing, L. Tectonic geomorphology, active tectonics and lower crustal channel flow hypothesis of the southeastern Tibetan Plateau. Chin. J. Geol. 2009, 44, 1227–1255. [Google Scholar]
- Zhang, H.P.; Yang, N.; Liu, S.F.; Zhang, Y.Q. Recent progress in the DEM-based tectonogeomorphic study. Geol. Bull. China 2006, 25, 660–669. [Google Scholar]
- Guo, L.; He, Z.; Li, L. Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Northern Segment of the Red River Fault Zone. Remote Sens. 2023, 15, 988. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Su, Q. Bedrock channel form in the Madong Shan (NE Tibet): Implications for the strain transfer along the strike-slip Haiyuan Fault. J. Asian Earth Sci. 2019, 181, 103891–103896. [Google Scholar] [CrossRef]
- Shen, K.; Dong, S.; Wang, Y. Active Tectonics Assessment Using Geomorphic and Drainage Indices in the Sertengshan, Hetao Basin, China. Remote Sens. 2023, 15, 3230. [Google Scholar] [CrossRef]
- Ding, R.; Ren, J.; Zhang, S.; Lv, Y.; Liu, H. Late quaternary paleoearthquakes on the middle segment of the Lijiang-Xiaojinhe fault, southeastern Tibet. Seismol. Geol. 2018, 40, 622–640. [Google Scholar]
- Li, A.; Zhang, S.; Ding, R.; Wang, X. A paleoseismic research of the south segment of the Lijiang-Xiaojinhe fault in the Holocene. Bull. Inst. Crustal Dyn. 2016, 1, 1–9. [Google Scholar]
- Wang, Y.; Wang, E.; Shen, Z.; Wang, M.; Gan, W.; Qiao, X.; Meng, G.; Li, T.; Tao, W.; Yang, Y. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Sci. China Ser. D: Earth Sci. 2008, 51, 1267–1283. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, X.; Gan, W.; Ma, W.; Chen, W.; Zhang, Y. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chin. J. Geophys. 2012, 55, 1198–1212. [Google Scholar]
- Gao, Y.; Ding, R.; Zhang, S. Slip Rate of Lijiang-Xiaojinhe Fault in the Holocene. Technol. Earthq. Disaster Prev. 2019, 14, 617–627. [Google Scholar]
- Xiang, H.; Xu, X.; Guo, S.; Zhang, W.; Li, H.; Yu, G. Inistral thrusting along the Lijiang-Xianjinhe fault since quaternary and its geologic-tectonic significance. Seismol. Geol. 2002, 24, 188–198. [Google Scholar]
- Li, H.; Ding, R.; Zhang, S. Geomorphological features of the south and middle sections of Lijiang-Xiaojinhe fault and their tectonic significance. Technol. Earthq. Disaster. Prev. 2020, 2, 380–391. [Google Scholar]
- Xu, X.; Wen, X.; Zheng, R.; Ma, W.; Song, F.; Yu, G. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2003, 46, 210–226. [Google Scholar] [CrossRef]
- Shen, Z.K.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res. Solid Earth 2005, 110, 1–17. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Chen, Z. [Geological Society of America Memoirs] Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geol. Soc. Am. Bull. 2013, 1–15, 1–164. [Google Scholar]
- Pan, G.T.; Xu, Y.R.; Wang, P.S. The Cenozoic tectonics at the eastern margin of Qinghai-Xizang Plateau. In Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau(12)–Tectonics in Sanjiang; “Sanjiang”Monograph Editorial Committee, Ed.; Geology Press: Beijing, China, 1983; pp. 129–141. [Google Scholar]
- Han, Z.; Guo, S.; Xiang, H.; Zhang, J.; Ran, Y. Seismotectonic environment of occurring the February 3, 1996 Lijiang M = 7.0 earthquake, Yunnan province. Acta Seismol. Sin. 2004, 26, 453–463. [Google Scholar] [CrossRef]
- Wu, G. The modes and mechanism of quaternary fault movement in Lijiang-Dali area, northwestern Yunnan and their influence on environment. Quat. Sci. 1992, 12, 265–276. [Google Scholar]
- Zhang, S.; Ding, R.; Ren, J.; Li, A.; Lv, Y.; Wang, X.; Li, T.; Liu, S.; Zhao, L.; Liu, H. Description of Lijiang-Xiaojinhe Active Fault (1:50,000); Seismological Press: Beijing, China, 2019. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. Isprs-J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- van Zyl, J.J. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronaut 2001, 48, 559–565. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2022); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar]
- Ye, T.; Huang, C.; Deng, S. 1:2.5 million spatial database of digital geological maps of the People’s Republic of China. Geol. China 2017, 44, 19–24. [Google Scholar]
- Kirby, E.; Whipple, K.X.; Tang, W.; Chen, Z. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 2003, 108, 1–24. [Google Scholar] [CrossRef]
- Stock, J.; Dietrich, W.E. Valley incision by debris flows: Evidence of a topographic signature. Water Resour. Res. 2003, 39, 1–25. [Google Scholar] [CrossRef]
- Li, Q.; Pan, B.; Gao, H.; Wen, Z.; Hu, X. Differential rock uplift along the northeastern margin of the Tibetan Plateau inferred from bedrock channel longitudinal profiles. J. Asian Earth Sci. 2019, 169, 182–198. [Google Scholar] [CrossRef]
- Liang, O.; Ren, J.; Lü, Y. The response of fluvial geomorphologic characteristics of the Fujiang drainge basin to activity of the Huya Fault zone. Seismol. Geol. 2018, 40, 42–56. [Google Scholar]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Tectonic control on10 Be-derived erosion rates in the Garhwal Himalaya, India. J. Geophys. Res. Earth Surf. 2014, 119, 83–105. [Google Scholar] [CrossRef]
- Schmidt, K.M.; Montgomery, D.R. Limits to relief. Science 1995, 270, 617–620. [Google Scholar] [CrossRef]
- Ouimet, W.B.; Whipple, K.X.; Granger, D.E. Beyond threshold hillslopes; channel adjustment to base-level fall in tectonically active mountain ranges. Geology 2009, 37, 579–582. [Google Scholar] [CrossRef]
- Whipple, K.X.; Kirby, E.; Brocklehurst, S.H. Geomorphic limits to climate-induced increases in topographic relief. Nature 1999, 401, 39–43. [Google Scholar] [CrossRef]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Tu, H.; Liu, Z. Study on relief amplitude in China. Acta Geod. Cartogr. Sin. 1991, 20, 311–319. [Google Scholar]
- Wang, L.; Tong, X.J. Analysis on relief amplitude based on change point method. Geogr. Geo-Inf. Sci. 2007, 23, 15. [Google Scholar]
- Zhang, W.; Li, A.N. Study on the optimal scale for calculating the relief amplitude in China based on DEM. Geogr. Geo-Inf. Sci. 2012, 28, 8–12. [Google Scholar]
- Zhong, J.; Lu, T. Optimal statistical unit for relief amplitude in Southwestern China. Bull. Soil Water Conserv. 2018, 38, 175–181. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Davis, W.M. The Geographical Cycle. In Climatic Geomorphology; Derbyshire, E., Ed.; Macmillan Education UK: London, UK, 1973; pp. 19–50. [Google Scholar]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol. Soc. Am. Bull. 1971, 82, 1079–1083. [Google Scholar] [CrossRef]
- Perron, J.T.; Royden, L. An integral approach to bedrock river profile analysis. Earth Surf. Process. Landf. 2013, 38, 570–576. [Google Scholar] [CrossRef]
- Goren, L.; Fox, M.; Willett, S.D. Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. J. Geophys. Res. Earth Surf. 2014, 119, 1651–1681. [Google Scholar] [CrossRef]
- Flint, J.J. Stream Gradient as a Function of Order, Magnitude, and Discharge. Water Resour. Res. 1974, 10, 969–973. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Fielding, E.; Isacks, B.; Barazangi, M.; Duncan, C. How flat is Tibet? Geology 1994, 22, 163–167. [Google Scholar] [CrossRef]
- Fielding, E.J. Tibet uplift and erosion. Tectonophysics 1996, 260, 55–84. [Google Scholar] [CrossRef]
- Liang, M.J.; Zhou, R.J.; Yan, L.; Zhao, G.H.; Guo, H.M. The relationships between neotectonic activity of the middle segment of Dari fault and its geomorphological response, Qinghai Province, China. Seismol. Geol. 2014, 36, 28–38. [Google Scholar]
- Su, Q.; Liang, M.; Yuan, D.; Xie, H.; Wu, Z. Geomorphic features of the Bailongjiang river drainage basin and its relationship with geological disaster. Earth Sci. 2016, 41, 1758–1770. [Google Scholar]
- Xu, S.; Liu, Y. Associations among ecosystem services from local perspectives. Sci. Total Environ. 2019, 690, 790–798. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Y.; Hu, D.; Zhao, X.; Ye, P. Late Quaternary normal faulting and its dynamic mechanism of the Haba-Yulong east piedmont, northwest Yunnan. Sci. China D 2008, 38, 1361–1375. [Google Scholar]
- Yin, G.; Su, G.; Ding, R.; Han, F.; Li, G.; Cheng, L.; Yang, G.; Wang, D. Kinematic property of the eastern piedmont fault of Yulong Mountains and its implication for geomorphology in Yunnan, southwest of China. Quat. Sci. 2017, 37, 250–259. [Google Scholar]
- Smith, A.G.G.; Fox, M.; Schwanghart, W.; Carter, A. Comparing methods for calculating channel steepness index. Earth-Sci. Rev. 2022, 227, 103970. [Google Scholar] [CrossRef]
- Schwanghart, W.; Kuhn, N.J. TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Modell. Softw. 2010, 25, 770–781. [Google Scholar] [CrossRef]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Kuehnl, A.; Pfiffner, O.A. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure; topographic analysis from a 250-m DEM. Geomorphology 2001, 41, 285–307. [Google Scholar]
- Chen, H.; Byun, J. Effects of erosional resistance on bedrock channel occurrence and morphology: Examination of the Seo River catchment in South Korea. Geomorphology 2023, 438, 108810. [Google Scholar] [CrossRef]
- Sklar, L.S.; Dietrich, W.E. Sediment and rock strength controls on river incision into bedrock. Geology 2001, 29, 1087–1090. [Google Scholar] [CrossRef]
- Li, Q.; Qin, B.; Pan, B. Bedrock channel width responses to tectonic uplift and lithologic resistance in the northern Qilian Mountains. Quat. Sci. 2020, 40, 132–147. [Google Scholar]
- Spotila, J.A.; Moskey, K.A.; Prince, P.S. Geologic controls on bedrock channel width in large, slowly-eroding catchments: Case study of the New River in eastern North America. Geomorphology 2015, 230, 51–63. [Google Scholar] [CrossRef]
- Kovler, K.; Wang, F.; Muravin, B. Testing of concrete by rebound method: Leeb versus Schmidt hammers. Mater. Struct. 2018, 51, 1–14. [Google Scholar] [CrossRef]
- Selby, M.J. A rock mass strength classification for geomorphic purpose: With tests from Antarctica and New Zealand. Z. Für Geomorphol. 1980, 24, 31–51. [Google Scholar] [CrossRef]
- Qin, B.; Li, Q.; Pan, B.; Wu, J.; Ji, X.; Chen, T. Evaluation of bedrock corrosion resistance and its influence on channel width in eastern Qilian Mountains. Quat. Sci. 2021, 41, 14–27. [Google Scholar]
- Li, Y.; Hao, M.; Ji, L.; Qin, S. Fault slip rate and seismic moment deficit on major active faults in mid and south part of the Eastern margin of Tibet plateau. Chin. J. Geophys. 2014, 57, 1062–1078. [Google Scholar]
- Zhu, S.; Yang, G.; Liu, X.; Dang, X. The deformation characteristics of Sichuan-Yunnan region in recent period. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1765–1772. [Google Scholar]
AAP | Slope | RDLS | HI | ksn–YT | ksn–LC | RH | |
---|---|---|---|---|---|---|---|
NW | 675.40 | 27.47 | 2067.93 | 0.5380 | 50.28 | 39.43 | 27.89 |
SE | 716.54 | 24.20 | 1667.29 | 0.4901 | 36.84 | 36.23 | 28.64 |
Segments | Sites | Left–Lateral Strike–Slip (mm/a) | Vertical Slip Rate (mm/a) | Reference |
---|---|---|---|---|
Southwestern segment | Jianchuan | 0.7 ± 0.2 | 0.2 | [29] |
3.8 | [21] | |||
↓ | 2.37 ± 0.2 | [19] | ||
3.1 ± 0.4 | 0.15 ± 0.05 | [23] | ||
Lijiang | 3.7 | [21] | ||
Middle segment | 3.5 ± 0.8 | 0.2 ± 0.02 | [29] | |
4.5 ± 0.2 | 0.65 ± 0.14 | [23] | ||
3.1–4.3 | [29] | |||
3.3 | 1–1.3 | [21] | ||
↓ | 3.5 | 1.5–1.75 | [21] | |
3.7–4.8 | 0.55 ± 0.03 | [29] | ||
0.9–2.4 | [29] | |||
3.23 ± 0.22 | 0.35 ± 0.02 | [19] | ||
3 ± 0.3 | 0.33 ± 0.04 | [29] | ||
Muli | 2.5 | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ding, R.; Zhang, S.; Jiang, D.; Li, L.; Hua, D. Characteristics and Tectonic Implications of the Geomorphic Indices of the Watersheds Around the Lijiang–Jinpingshan Fault. Remote Sens. 2024, 16, 3826. https://doi.org/10.3390/rs16203826
Chen Y, Ding R, Zhang S, Jiang D, Li L, Hua D. Characteristics and Tectonic Implications of the Geomorphic Indices of the Watersheds Around the Lijiang–Jinpingshan Fault. Remote Sensing. 2024; 16(20):3826. https://doi.org/10.3390/rs16203826
Chicago/Turabian StyleChen, Yongqi, Rui Ding, Shimin Zhang, Dawei Jiang, Luyao Li, and Diwei Hua. 2024. "Characteristics and Tectonic Implications of the Geomorphic Indices of the Watersheds Around the Lijiang–Jinpingshan Fault" Remote Sensing 16, no. 20: 3826. https://doi.org/10.3390/rs16203826
APA StyleChen, Y., Ding, R., Zhang, S., Jiang, D., Li, L., & Hua, D. (2024). Characteristics and Tectonic Implications of the Geomorphic Indices of the Watersheds Around the Lijiang–Jinpingshan Fault. Remote Sensing, 16(20), 3826. https://doi.org/10.3390/rs16203826