Tropical Cyclone Wind Direction Retrieval Based on Wind Streaks and Rain Bands in SAR Images
Abstract
:1. Introduction
2. Materials and Dataset
2.1. Sentinel-1 SAR Images
2.2. HRD Observation Wind Products
2.3. ECMWF Reanalysis Products
3. Methodology
3.1. The Inception V3 Convolutional Neural Network
3.2. Edge Detection Algorithm
3.3. Wind Direction Retrieval
- (1)
- Utilize the Canny edge detector to identify rain band streaks in SAR images with VV and VH polarization.
- (2)
- Select more than three clear rain band streaks with an arcuate distribution.
- (3)
- Using the characteristic of the arcuate rain band streaks spiraling towards the TC’s eye, this study defines the perpendicular bisector of the spiral rain band, deviating inward by 20°, as the center of the spiral rain band and the TC’s eye. The tangent to the spiral rain band at this point represents the wind direction.
- (4)
- Compute the average position of the TC’s eye from multiple spiral calculations in VV and VH polarizations as the final result.
- (5)
- Determine the wind direction based on the tangent direction of the spiral centered at the TC’s eye.
4. Results and Validation
4.1. Recognition of SAR Sub-Images
4.2. Wavelet Transform-Based Wind Direction Retrieval for SAR WSs Sub-Images
4.3. Wind Direction Retrieval Method for SAR Rain Bands Sub-Images
4.4. Wind Direction Ambiguity Removal and Results Validation
- (1)
- Determine the TC’s eye position using an edge detection algorithm.
- (2)
- Account for the TC’s rotational direction: counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere.
- (3)
- Taking the Northern Hemisphere as an example, the distribution of the counterclockwise rotating wind field is illustrated in Figure 4, serving as a rough reference for the counterclockwise wind direction; note that in the Southern Hemisphere, the rotation is clockwise.
- (4)
- Determine the position of the sub-image in relation to the center of the tropical cyclone.
- (5)
- Select the wind direction solution that is closest to the estimate provided in (3) as the final result: As shown in Figure 10, the retrieved wind direction of the sub-image (with a 180° ambiguity) is denoted as , and the reference wind direction value is denoted as and , when is minimized, represents the de-ambiguous wind direction.
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.; Li, X.; Liu, B.; Zhang, J.A.; Shen, D.; Zhang, Z.; Yu, W. Tropical cyclone boundary layer rolls in synthetic aperture radar imagery. J. Geophys. Res. Ocean. 2018, 123, 2981–2996. [Google Scholar] [CrossRef]
- Jin, S.; Li, X.; Yang, X.; Zhang, J.A.; Shen, D. Identification of tropical cyclone centers in SAR imagery based on template matching and particle swarm optimization algorithms. IEEE Trans. Geosci. Remote Sens. 2018, 57, 598–608. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Zhang, B.; Yang, J.; He, Y. Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR images. Remote Sens. Environ. 2020, 236, 111449. [Google Scholar] [CrossRef]
- Pierson, W.J., Jr. The measurement of the synoptic scale wind over the ocean. J. Geophys. Res. Ocean. 1983, 88, 1683–1708. [Google Scholar] [CrossRef]
- Gerling, T. Structure of the surface wind field from the Seasat SAR. J. Geophys. Res. Ocean. 1986, 91, 2308–2320. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-band scatterometer CMOD5. N equivalent neutral winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Quilfen, Y.; Bentamy, A. Calibration/validation of ERS-1 scatterometer precision products. In Proceedings of the IGARSS’94-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 2, pp. 945–947. [Google Scholar]
- Horstmann, J.; Koch, W. Ocean wind field retrieval using ENVISAT ASAR data. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; Volume 5, pp. 3102–3104. [Google Scholar]
- Shao, W.; Zhou, Y.; Zhang, Q.; Jiang, X. Machine Learning-Based Wind Direction Retrieval From Quad-Polarized Gaofen-3 SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 808–816. [Google Scholar] [CrossRef]
- Furevik, B.R.; Johannessen, O.M.; Sandvik, A.D. SAR-retrieved wind in polar regions-comparison with in situ data and atmospheric model output. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1720–1732. [Google Scholar] [CrossRef]
- Lehner, S.; Horstmann, J.; Koch, W.; Rosenthal, W. Mesoscale wind measurements using recalibrated ERS SAR images. J. Geophys. Res. Ocean. 1998, 103, 7847–7856. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, W.; Ai, W.; Ma, S. A Method of Ocean Surface Wind Direction Retrievals for Airborne SAR Images Based on Gabor Wavelet Transform. J. Microw. 2011, 27, 79–83. [Google Scholar] [CrossRef]
- Zecchetto, S. Wind direction extraction from SAR in coastal areas. Remote Sens. 2018, 10, 261. [Google Scholar] [CrossRef]
- Corazza, A.; Khenchaf, A.; Comblet, F. Assessment of Wind Direction Estimation Methods from SAR Images. Remote Sens. 2020, 12, 3631. [Google Scholar] [CrossRef]
- Koch, W. Directional analysis of SAR images aiming at wind direction. IEEE Trans. Geosci. Remote Sens. 2004, 42, 702–710. [Google Scholar] [CrossRef]
- Zhu, H.; Wen, B.; Huang, J. Wind Directions Retrieval Based on Scale Partitioned SAR Images’ Gradients. J. Wuhan Univ. Sci. Ed. 2005, 51, 375–378. [Google Scholar]
- Rana, F.M.; Adamo, M.; Pasquariello, G.; De Carolis, G.; Morelli, S. LG-Mod: A Modified Local Gradient (LG) Method to Retrieve SAR Sea Surface Wind Directions in Marine Coastal Areas. J. Sens. 2016, 2016, 9565208. [Google Scholar] [CrossRef]
- Xie, T.; Geng, X.; Edwing, K.; Liu, D.; Jian, C.; Yan, X.H. Tropical cyclone wind direction retrieval from sentinel-1 SAR imagery by a modified Improved Local Gradient (ILG-Mod) method. Remote Sens. Lett. 2023, 14, 1335–1346. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Mouche, A. Tropical Cyclone Wind Direction Retrieval from C-Band Dual-Polarization Synthetic Aperture Radar. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 1423–1427. [Google Scholar]
- Ni, W.; Stoffelen, A.; Ren, K. Tropical cyclone wind direction retrieval from dual-polarized SAR imagery using histogram of oriented gradients and Hann window function. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 878–888. [Google Scholar] [CrossRef]
- Du, Y.; Vachon, P.W.; Wolfe, J. Wind direction estimation from SAR images of the ocean using wavelet analysis. Can. J. Remote Sens. 2002, 28, 498–509. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, G.; Zhou, L.; Qiu, Z.; Li, X.; Zhou, Y. Wind direction retrieval of tropical cyclone from SAR imagery using improved local gradient method. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Chengdu, China, 18–20 July 2020; IOP Publishing: Bristol, UK, 2020; Volume 569, p. 012055. [Google Scholar]
- Gao, Y.; Guan, C.; Sun, J.; Xie, L. A New Hurricane Wind Direction Retrieval Method for SAR Images without Hurricane Eye. J. Atmos. Ocean. Technol. 2018, 35, 2229–2239. [Google Scholar] [CrossRef]
- Guo, C.; Ai, W.; Hu, S.; Du, X.; Chen, N. Sea surface wind direction retrieval based on convolution neural network and wavelet analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3868–3876. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Bibby, D.; Rommen, B. Sentinel-1 system. In Proceedings of the EUSAR 2014; 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–3. [Google Scholar]
- Wang, C.; Mouche, A.; Tandeo, P.; Stopa, J.E.; Longépé, N.; Erhard, G.; Foster, R.C.; Vandemark, D.; Chapron, B. A labelled ocean SAR imagery dataset of ten geophysical phenomena from Sentinel-1 wave mode. Geosci. Data J. 2019, 6, 105–115. [Google Scholar] [CrossRef]
- Powell, M.D.; Black, P.G. The relationship of hurricane reconnaissance flight-level wind measurements to winds measured by NOAA’s oceanic platforms. J. Wind. Eng. Ind. Aerodyn. 1990, 36, 381–392. [Google Scholar] [CrossRef]
- Yao, J.; Miao, Y.; Kumara, P.T.P.; Arulananthan, K.; Zhang, Z.; Zhou, W. Analysis of Wind Energy Potential in Sri Lankan Waters Based on ERA5 (ECMWF Reanalysis v5) and CCMP (Cross-Calibrated Multi-Platform). J. Mar. Sci. Eng. 2024, 12, 876. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Indolia, S.; Goswami, A.K.; Mishra, S.P.; Asopa, P. Conceptual understanding of convolutional neural network-a deep learning approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Guo, C.; Ai, W.; Zhang, X.; Guan, Y.; Liu, Y.; Hu, S.; Zhao, X. Correction of sea surface wind speed based on SAR rainfall grade classification using convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 321–328. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. [Google Scholar]
- Lei, Z.; Hanqing, S.; Huadong, D.; Xian, C.; Hailong, D. Estimation of sea surface wind direction using spaceborne SAR images and wavelet analysis. J. Remote Sens. 2014, 18, 215–230. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, G.; Li, X.; Yang, J.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery. Remote Sens. 2017, 9, 671. [Google Scholar] [CrossRef]
- Zheng, G.; Li, X.; Zhou, L.; Yang, J.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. Development of a Gray-Level Co-Occurrence Matrix-Based Texture Orientation Estimation Method and Its Application in Sea Surface Wind Direction Retrieval from SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5244–5260. [Google Scholar] [CrossRef]
TC Name | Acquisition Time | Satellite | Acquisition Mode | Polarization | Category | ATCF ( (m/s)) | Ocean |
---|---|---|---|---|---|---|---|
Irma | 7 September 2017 10:29:51 | S1-A | IW | VV + VH | 5 | 75 | Atlantic |
Maria | 21 September 2017 22:46:26 | S1-A | IW | VV + VH | 3 | 56 | Atlantic |
Maria | 23 September 2017 10:43:49 | S1-B | IW | VV + VH | 3 | 51 | Atlantic |
Hector | 7 August 2018 15:45:02 | S1-A | EW | VV + VH | 4 | 59 | Pacific |
Michael | 9 October 2018 23:43:05 | S1-A | EW | VV + VH | 3 | 56 | Atlantic |
Michael | 10 October 2018 11:49:07 | S1-A | EW | VV + VH | 4 | 64 | Atlantic |
Dorian | 30 August 2019 22:45:48 | S1-A | IW | VV + VH | 4 | 58 | Atlantic |
Douglas | 25 July 2020 03:47:55 | S1-A | EW | VV + VH | 3 | 50 | Pacific |
Delta | 8 October 2020 00:07:02 | S1-B | IW | VV + VH | 1 | 41 | Atlantic |
Larry | 7 September 2021 21:46:30 | S1-B | EW | VV + VH | 3 | 51 | Atlantic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yang, H.; Ai, W.; Ren, K.; Hu, S.; Wang, L. Tropical Cyclone Wind Direction Retrieval Based on Wind Streaks and Rain Bands in SAR Images. Remote Sens. 2024, 16, 3837. https://doi.org/10.3390/rs16203837
Liu Z, Yang H, Ai W, Ren K, Hu S, Wang L. Tropical Cyclone Wind Direction Retrieval Based on Wind Streaks and Rain Bands in SAR Images. Remote Sensing. 2024; 16(20):3837. https://doi.org/10.3390/rs16203837
Chicago/Turabian StyleLiu, Zhancai, Hongwei Yang, Weihua Ai, Kaijun Ren, Shensen Hu, and Li Wang. 2024. "Tropical Cyclone Wind Direction Retrieval Based on Wind Streaks and Rain Bands in SAR Images" Remote Sensing 16, no. 20: 3837. https://doi.org/10.3390/rs16203837
APA StyleLiu, Z., Yang, H., Ai, W., Ren, K., Hu, S., & Wang, L. (2024). Tropical Cyclone Wind Direction Retrieval Based on Wind Streaks and Rain Bands in SAR Images. Remote Sensing, 16(20), 3837. https://doi.org/10.3390/rs16203837